Синглетон (математика)

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Значения СингельтонШаблон:SfnШаблон:Sfn, или синглетон — множество с единственным элементом. Например, множество {0} является сингельтоном.

Свойства

Заметим, что множество {{1, 2, 3}} также является сингельтоном: единственный элемент является множеством (которое само по себе не синглетон).

Чёткое множество является сингельтоном тогда и только тогда, когда его кардинальное число равно 1. В теоретико-множественном построении натуральных чисел, число 1 определено как сингельтон {}, или в другой записи {{}}.

В аксиоматической теории множеств существование сингельтонов появляется вследствие аксиомы о пустом множестве и аксиомы спаривания: первая из них вводит понятие пустого множества {}, а вторая, применённая к паре {} и {}, вводит понятие сингельтона {{}}.

Если A является любым множеством и S является любым сингельтоном, тогда существует одна и только одна функция из A в S, которая отображает каждый элемент множества A в единственный элемент множества S.

Применения

В топологии пространство является T1-пространством тогда и только тогда, когда каждый сингельтон замкнут.

Структуры, построенные на сингельтонах, часто служат терминальными объектами или нулевыми объектами различных категорий:

  • утверждение выше показывает, что множества-сингельтоны являются терминальными объектами в категории Set;
  • любой сингельтон может быть преобразован в топологическое пространство ровно одним способом (все подмножества открыты). Эти сингельтонные топологические пространства являются терминальными объектами в категории топологических пространств и непрерывных отображений;
  • любой сингельтон может быть преобразован в группу ровно одним способом (единственный элемент служит нейтральным элементом). Такие сингельтонные группы являются нулевыми объектами в категории групп и групповых гомоморфизмов.

См. также

Примечания

Шаблон:Примечания

Литература

Шаблон:Теория множеств