Таблица Витхоффа

Материал из testwiki
Перейти к навигации Перейти к поиску

В математике таблица Витхоффа —  бесконечная целочисленная матрица, полученная из последовательности Фибоначчи и названная в честь голландского математика Шаблон:Не переведено 4. Была определена математиком Моррисоном в 1980 году на основе пар Витхоффа, координат выигрышных позиций в игре Витхоффа; может также быть определена с помощью чисел Фибоначчи и теоремы Цекендорфа или непосредственно через золотое сечение и рекуррентное соотношение, определяющее числа Фибоначчи. Каждое положительное целое число встречается в таблице ровно один раз, и путём сдвига строк таблицы можно получить любую целочисленную последовательность, определяемую рекуррентным соотношением Фибоначчи.

Значения

Массив Витхоффа имеет следующие значения

123581321471118294776610162642681109152439631021651220325284136220142337609715725417284573118191309 Шаблон:OEIS.

Эквивалентные определения

Вдохновленный аналогичным массивом, ранее определенным Столярским (1977), Моррисон определил массив Витхоффа следующим образом. Пусть φ=1+52 обозначает золотое сечение; тогда i-я выигрышная позиция в игре Витхоффа задается парой целых положительных чисел (iφ,iφ2), где числа в каждой паре определяют две комплементарные последовательности Битти, в которой каждое натуральное число встречается ровно в одной из двух последовательностей. Моррисон определяет первые два числа m-й строка матрицы как пару Витхоффа, задаваемую уравнением m=iφ, остальные числа в строке задаются рекуррентным соотношением Фибоначчи. То есть элемент матрицы Am,n определяется как

Am,1=mφφ,
Am,2=mφφ2,
Am,n=Am,n2+Am,n1, n>2.

Представление Цекендорфа натурального числа — представление его в виде суммы различных чисел Фибоначчи, никакие два из которых не являются последовательными членами последовательности Фибоначчи. Как описывает Кимберлинг (1995 г.), числа в каждой строке матрицы имеют представления Цекендорфа, отличающиеся друг от друга сдвигом, а числа в каждом столбце матрицы имеют представления Цекендорфа с одним и тем же наименьшим числом Фибоначчи. В частности, элемент Am,n можно определить как m-е наименьшее число, чьё представление Цекендорфа начинается с n-го числа Фибоначчи.

Свойства

Каждая пара Витхоффа встречается в таблице Витхоффа ровно один раз, в виде последовательной пары чисел в одной строке, с нечетным индексом для первого элемента пары и четным для второго. Поскольку каждое натуральное число встречается ровно в одной паре Витхоффа, каждое натуральное число встречается ровно один раз и в таблице Витхоффа (Моррисон, 1980).

Таблица Витхоффа содержит любую последовательность натуральных чисел, удовлетворяющих рекуррентному соотношению Фибоначчи, с точностью до сдвига не более, чем на конечное число позиций. В частности, сама последовательность Фибоначчи представлена первой строкой таблицы, а последовательность Люка, начиная с третьего её члена, представлена второй строкой таблицы (Моррисон, 1980).

Ссылки

Внешние ссылки