Теорема Лапласа
Теоре́ма Лапла́са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 — 1827), которому приписывают формулирование этой теоремы в 1772 году[1], хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.
Формулировка
Для начала введём несколько определений.
Пусть — матрица размера , и пусть выбраны любые строк матрицы с номерами и любые столбцов с номерами .
Определитель матрицы, получаемой из вычеркиванием всех строк и столбцов, кроме выбранных, называется минором -го порядка, расположенным в строках с номерами и столбцах с номерами . Он обозначается следующим образом:
А определитель матрицы, получаемой вычеркиванием только выбранных строк и столбцов из квадратной матрицы, называется дополнительным минором к минору :
где и — номера невыбранных строк и столбцов.
Алгебраическое дополнение минора определяется следующим образом:
где , .
Справедливо следующее утверждение. Шаблон:Теорема Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .
Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.
Разложение определителя по строке (столбцу) (Следствие 1)
Широко известен частный случай теоремы Лапласа — разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.
Пусть — квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам: Шаблон:Теорема где — алгебраическое дополнение к минору, расположенному в строке с номером и столбце с номером . также называют алгебраическим дополнением к элементу .
Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.
Следствие 2 (фальшивое разложение определителя)
Сумма произведений всех элементов некоторой строки (столбца) матрицы на алгебраические дополнения соответствующих элементов любой другой строки (столбца) равна нулю.