Точка Аполлония

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Не путать Точка Аполлония Ap — специальная точка в треугольнике. Определяется как точка пересечения прямых, соединяющих вершины треугольника с точками касания 3 вневписанных окружностей треугольника с описанной вокруг них окружностью. Связана с задачей Аполлония. В Энциклопедии центров треугольника именуется как центр треугольника под именем X(181).

Пример применения точки Аполлония к решению задачи Аполлония

Задача Аполлония — построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. Один из вариантов этой задачи, когда третья окружность касается трёх внутренних внешним образом, решается с помощью введения точки Аполлония Ap[1][2].

  • Точка Аполлония Ap в Энциклопедии центров треугольника именуется как центр треугольника под именем X(181).
  • В рамках этой задачи окружностью Аполлония (не путать с окружностями Аполлония) называется окружность, которая касается трех вневписанных окружностей вне треугольника внутренним образом (см. зелёную окружность на рисунке).

Окружность Аполлония

Определение окружности Аполлония

Точка Аполлония и окружность Аполлония
  • Дан треугольник ABC. Пусть вневписанные окружности треугольника ABC, противоположные вершинам A, B и C, есть соответственно EA, EB, EC (см. рисунок). Тогда окружность Аполлония E (на рис. справа показана зелёным цветом) касается внутренним образом сразу трех вневписанных окружностей треугольника ABC в точках соответственно EA, EB и EC (см. рисунок)[3].
  • Решением упомянутой выше частной задачи Аполлония является указанная окружность E, касающаяся трех данных окружностей EA, EB и EC внешним образом.

Радиус окружности Аполлония

Радиус окружности Аполлония равен r2+s24r, где r — радиус вписанной окружности и s — полупериметр треугольника[4].

Определение точки Аполлония Ap

Пусть A, B и C есть точки касания окружности Аполлония E с соответствующими вневписанными окружностями. Тогда прямые AA, BB и CC пересекаются в одной точке Ap, которую называют точкой Аполлония треугольника ABC.

  • Ее трилинейные координаты:
a(b+c)2b+ca:b(c+a)2c+ab:c(a+b)2a+bc=
=sin2Acos2(B2C2):sin2Bcos2(C2A2):sin2Ccos2(A2B2).

Замечание

На рисунке указанная точка Аполлония Ap изображена, как точка пересечения трех перпендикуляров к сторонам треугольника ABC, опущенных из точек касаний A, B и C с соответствующими вневписанными окружностями треугольника ABC, образованного совместными попарными касательными линиями трех упомянутых выше окружностей EA, EB и EC. Хотя эта точка Ap лежит в точке пересечения трех отрезков AA, BB и CC, но они не перпендикулярны сторонам треугольника. Действительно, её проекции на стороны треугольника ABC являются вершинами равностороннего треугольника, а перпендикуляры к сторонам треугольника пересекаются в его ортоцентре. Проекции ортоцентра на стороны треугольника не являются вершинами равностороннего треугольника. Ортоцентр и точка Аполлония Ap совпадают только у равностороннего треугольника. У других треугольников они не совпадают.

Свойство

См. также

Примечания

Шаблон:Примечания