NOx (оксиды азота)

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Эта статья NOx — собирательное название оксидов азота NO и NO2, образующихся в химических реакциях в атмосфере и при горении. Вместе с летучими органическими веществами, приповерхностным озоном, свинцом, угарным газом, оксидами серы и пылевыми частицами входят в число вредных выбросов, в отношении которых действуют установленные Управлением по защите окружающей среды США ограничения[1].

NOx в атмосфере образуются как вследствие естественных явлений, таких как молнии и лесные пожары, так и в результате деятельности человека. Примеси NO2 окрашивают промышленные дымы в бурый цвет, поэтому выбросы заводов с заметным содержанием оксидов азота названы «лисьими хвостами». Выбросы NOx считаются одной из основных причин образования фотохимического смога. Соединяясь с парами воды в атмосфере, они образуют азотную кислоту, и, вместе с оксидами серы, являются причиной образования кислотных дождей. Повышенные концентрации NOx оказывают вредное воздействие на здоровье человека, поэтому в разных странах приняты нормативы, ограничивающие максимально допустимые концентрации NOx в выхлопах котлов электростанций, газотурбинных установок, автомобилей, самолётов и прочих устройств. Совершенствование технологий горения в значительной степени направлено на сокращение выбросов NOx при одновременном повышении энергоэффективности устройств.

Закись азота N2O не включается в NOx, но оказывает влияние на состояние озонового слоя в верхних слоях атмосферы.

Воздействие NOx на здоровье

NO не имеет запаха, но при вдыхании может связываться с гемоглобином, подобно угарному газу переводя его в форму, не способную переносить кислород[2]. Оксид азота(IV) NO2 (диоксид азота; двуокись азота) в высоких концентрациях раздражает лёгкие и может привести к серьёзным последствиям для здоровья. NO2 соединяется с водой, хорошо растворяется в жире и может проникать в капилляры лёгких, где он вызывает воспаление и астматические процессы. Концентрация NO2 свыше 200 ppm считается летальной, но уже при концентрации свыше 60 ppm могут возникать неприятные ощущения и жжение в лёгких. Долговременное воздействие более низких концентраций может вызывать головную боль, проблемы с пищеварением, кашель и лёгочные заболевания.

В клинике острого отравления оксидами азота различают четыре периода: латентный, нарастания отёка лёгких, стабилизации и обратного развитияШаблон:Sfn. В скрытом периоде мнимого благополучия, который может продолжаться 4—12 часов, больного может беспокоить конъюнктивит, ринит и фарингит за счёт раздражения слизистых оболочек, проявляющиеся кашлем, слезотечением, общим недомоганием, однако его общее состояние в целом удовлетворительноеШаблон:Sfn. Затем состояние больного ухудшается: по мере развития отёка лёгких появляется влажный кашель со слизистой или кровянистой мокрота, одышка, цианоз, тахикардия, субфебрильное или фебрильное повышение температуры. Возникает чувство страха, психомоторное возбуждение и судороги. В отсутствие квалифицированной медицинской помощи это может привести к летальному исходу.

Повышенная концентрация оксидов азота и озона оказывает негативное воздействие на насекомых-опылителей — пчёл, шмелей, бабочек, мотыльков. Снижается как их численность, так и посещаемость цветков растений опылителями, что может представлять опасность для урожайности культур. При этом другие насекомые — жуки, осы-паразиты и клопы — не ощущают отрицательных последствий от воздействия повышенных концентраций оксидов азота[3].

Механизмы образования NOx

Файл:Zeldovich.jpg
Я. Б. Зельдович предложил объяснение механизма образования оксидов азота при горении в 1940-е годы.

Известны три основных механизма образования NOxШаблон:Sfn:

  • тепловой механизм, или высокотемпературный механизм Зельдовича
  • «быстрый» механизм (Шаблон:Lang-en), называемый также химическим
  • механизм, связанный с образованием NOx из азотсодержащих компонентов топлива («топливные NOx», Шаблон:Lang-en)

Дополнительные пути образования NO связаны с реакциями закиси азота N2O и радикала NNHШаблон:Sfn.

Механизм Зельдовича

Высокотемпературный механизм окисления азота в зоне горения был предложен Я. Б. Зельдовичем в середине 1940-х годовШаблон:Sfn и считается основным механизмом образования оксидов азота при горении. Этот механизм включает следующие элементарные стадии:

𝖭𝟤+𝖮𝖭𝖮+𝖭  (𝟣)
𝖭+𝖮𝟤𝖭𝖮+𝖮  (𝟤)

к которым добавляется реакция (Фенимор и Джонс, 1957[4]):

𝖭+𝖮𝖧𝖭𝖮+𝖧  (𝟥)

Совокупность реакций (1-3) называется расширенным механизмом Зельдовича. В силу того что энергия тройной связи в молекуле N2 составляет около 950 кДж/моль, реакция (1) имеет большую энергию активации и может проходить с заметной скоростью только при высоких температурах. Поэтому этот механизм играет важную роль в случае высоких температур в зоне реакции, например, при горении околостехиометрических смесей или при диффузионном горении. Считается, что повышение максимальной температуры в зоне горения свыше 1850 К приводит к недопустимо высоким выбросам NOx, и одним из основных способов снижения выбросов по тепловому механизму является недопущение образования очагов высокой температуры во фронте пламени.

«Быстрый» механизм

Кинетическая схема образования NO по быстрому механизму

Механизм Зельдовича хорошо описывает выбросы NOx в случае воздействия тепловых факторов (например, при горении водорода или окиси углерода в воздухе), однако для углеводородных топлив оказалось, что экспериментально измеренные концентрации NOx всякий раз заметно превышают предсказываемые по тепловому механизму. Прямые измерения, проведённые Фенимором в 1971 году, показали, что NO образуется уже в начале зоны химической реакции[5]. Этот механизм был назван «быстрым» (Шаблон:Lang-en) или механизмом Фенимора.

Образование NOx по быстрому механизму связано с реакцией радикала CH, который присутствует только в начальной зоне разложения углеводородных топлив, с молекулярным азотом:

𝖢𝖧+𝖭𝟤𝖭𝖢𝖭+𝖧  (𝟦)

NO может образовываться в ряде последующих реакций с участием различных радикалов, например:

𝖭𝖢𝖭+𝖮𝟤𝖭𝖢𝖮+𝖭𝖮
𝖭𝖢𝖮+𝖮𝖢𝖮+𝖭𝖮
𝖭𝖢𝖭+𝖮𝖧𝖧𝖢𝖭+𝖭𝖮
𝖧𝖢𝖭+𝖮𝖭𝖧+𝖢𝖮
𝖭𝖧+𝖮𝖭𝖮+𝖧

Общая схема реакций быстрого механизма показана на рисунке.

Долгое время считалось, что вместо реакции (4) радикал CH реагирует с N2 по путиШаблон:Sfn:

𝖢𝖧+𝖭𝟤𝖧𝖢𝖭+𝖭

однако данная реакция запрещена по спину[6], и проведённые в последние годы квантовохимические расчёты и экспериментальные исследования показали, что главную роль играет реакция (4)[7][8].

Поскольку в быстром механизме реакция (4) протекает с небольшой энергией активации, она возможна при относительно невысоких температурах порядка 1000 К, а в богатых смесях (с избытком горючего) образованию NO способствует повышенная концентрация радикалов CH.

Образование NOx из азотсодержащих компонентов топлива

Практически все твёрдые горючие материалы содержат органические вещества, в составе которых есть азот. Уголь, сено, дерево и домашний мусор могут содержать до 1-3 % азота по массе. При пиролизе и горении таких материалов в результате разложения этих компонентов может образовываться NO. Часть азота может переходить в N2 или оставаться в связанном состоянии в золе, смолах и других нелетучих остатках. Поскольку процессы сжигания угля и других твёрдых горючих материалов проходят при относительно невысоких температурах, когда механизм Зельдовича не работает, вклад данного механизма в выбросы и NOx может оказаться существеннымШаблон:Sfn.

Способы снижения выбросов NOx

Поскольку основная масса выбросов NOx в реальных устройствах приходится на высокотемпературный механизм Зельдовича, большинство разработанных к настоящему времени способов снижения этих выбросов направлено на снижение максимальной температуры в зоне горения и на сокращение времени пребывания реагентов в этой зоне. Способы снижения выбросов NOx подразделяются на первичные и вторичныеШаблон:Sfn. К первичным относятся меры по оптимизации процесса горения и конструкции устройств, в результате которых снижается концентрация NOx в выхлопных газах. Вторичные способы (селективное или неселективное каталитическое восстановление) подразумевают очистку выхлопных газов перед их выбросом в атмосферу и влекут за собой существенные дополнительные затраты. Фактически применяемые способы в значительной степени обусловлены существующими в различных странах нормативами на выбросы NOx в промышленных установках (газотурбинные электростанции, промышленные печи), самолётах, автомобилях и устройствах для потребительского сектора, таких как бойлеры или нагреватели. Чем более жёсткие нормы установлены для выбросов, тем дороже оказывается конструкция камеры сгорания и сложнее управление её рабочим процессом.

Впрыск водяного пара

В установках с диффузионным режимом горения окислитель и горючее подаются раздельно в камеру сгорания, где они перемешиваются и сгорают. Такая организация подачи компонентов относительно безопасна и позволяет управлять рабочим процессом в широких пределах, варьируя расход компонентов. Однако в диффузионном пламени в зоне горения окислитель и горючее автоматически оказываются в стехиометрическом соотношении и неизбежно образуются очаги повышенной температуры, что приводит к образованию NOx. Снижение выбросов в таких установках достигается посредством разбавления смеси охлаждающим компонентом, чаще всего впрыском воды или водяного пара в камеру сгорания. Однако этот способ неизбежно приводит к снижению мощности и КПД установки, а его применимость ограничена тем, что вместе с сокращением NOx начинают возрастать выбросы CO и других продуктов неполного сгоранияШаблон:Sfn.

Многоступенчатое сжигание

Для снижения температуры в зоне химической реакции компоненты можно сжигать в несколько этапов. Например, на первом этапе может сжигаться богатая смесь (с избытком горючего) с последующим охлаждением продуктов неполного сгорания посредством теплоотводящих элементов. На втором и последующих этапах в смесь добавляется дополнительный воздух, который позволяет осуществить полное сгорание смеси до конечных продуктов сгорания (CO2 и H2O). При этом температура на всем протяжении зоны горения нигде не достигает величин, при которых образуются тепловые NOx, однако это достигается ценой снижения мощности установки и усложнения её конструкции.

Одним из наиболее распространённых вариантов технологии многоступенчатого сжигания является трёхступенчатое сжигание (Шаблон:Lang-en). Сущность этого метода заключается в том, что на первом этапе сжигается богатая смесь, на втором, основном этапе — смесь с избытком воздуха, а на третьем этапе в продукты сгорания снова добавляется углеводородное горючее, которое действует как восстановитель для уже образовавшихся в основной зоне горения оксидов азота. В результате этого происходит восстановление NOх до N2Шаблон:Sfn[9].

Рециркуляция выхлопных газов

Впрыск водяного пара или подача дополнительного воздуха в зону реакции сопряжёны с усложнением конструкции устройства и применяются в основном в системах, созданных до изобретения более простых и экономичных методов. В более современных системах в качестве разбавителя исходной смеси применяются сами продукты сгорания, отбираемые из потока дымовых или выхлопных газов. Эти продукты, состоящие в основном из CO2 и H2O, имеют высокую теплоёмкость и эффективно отбирают тепло из зоны реакции, снижая её температуру. Энергетическая эффективность установки снижается в меньшей степени, чем при подаче воздуха или водяного пара извне, так как энергия продуктов сгорания частично возвращается в систему. Конструкция самой установки упрощается, поскольку не требуется создавать отдельные узлы, обеспечивающие подачу внешних компонентов. Эти методы нашли применение как в автомобильных двигателях в системах рециркуляции выхлопных газов (Шаблон:Lang-en, exhaust gas recirculation), так и в бойлерах и топочных устройствах (рециркуляция дымовых газов, Шаблон:Lang-en, flue gas recirculation)[10].

Горение бедных смесей

Этот способ снижения выбросов нашёл широкое применение в газотурбинных установках. В камеру сгорания подаётся предварительно перемешанная смесь горючего и воздуха в нестехиометрическом отношении с избытком воздуха (бедная смесь). При этом обеспечивается практически полное сгорание исходного горючего, а температура продуктов сгорания снижается, что приводит также к сокращению выбросов NOx по высокотемпературному механизму. Если в качестве горючего применяется природный газ, то фактически все выбросы NOx приходятся на быстрый механизм.

Газотурбинные установки, использующие горение бедных смесей с низкими выбросами NOx, иногда называются «сухими» (Шаблон:Lang-en), поскольку в них впрыск водяного пара отсутствует. Однако диапазон устойчивого горения в таких установках заметно снижается, они подвержены опасностям развития неустойчивостей горения, проскока и срыва пламениШаблон:Sfn. Поэтому их диапазон по мощности ограничен, а резкие изменения нагрузки в сети приводили к авариям из-за веерного самопроизвольного выключения газотурбинных установок в сетях генерации мощности. Кроме того, диапазон устойчивого горения чувствителен к сорту топлива, и переход на топливо от другого поставщика может быть сопряжен со значительными трудностями, так как состав природного газа из различных месторождений сильно варьируется.

Селективное каталитическое восстановление

Метод Шаблон:Не переведено 5 (СКВ, Шаблон:Lang-en) применяется для очищения дымовых и выхлопных газов от NOx с эффективностью, доходящей до 90 %. В поток выхлопных газов инжектируется реагент, обычно аммиак или мочевина, и смесь поступает на катализатор. Катализатор работает в диапазоне температур от 450 до 900 К и обеспечивает протекание следующих реакций, в которых оксид азота восстанавливается до молекулярного азота:

𝟦𝖭𝖮+𝟦𝖭𝖧𝟥+𝖮𝟤𝟦𝖭𝟤+𝟨𝖧𝟤𝖮
𝟨𝖭𝖮𝟤+𝟪𝖭𝖧𝟥𝟩𝖭𝟤+𝟣𝟤𝖧𝟤𝖮

в случае добавления аммиака и

𝟦𝖭𝖮+𝟤(𝖭𝖧𝟤)𝟤𝖢𝖮+𝟤𝖧𝟤𝖮+𝖮𝟤𝟦𝖭𝟤+𝟨𝖧𝟤𝖮+𝟤𝖢𝖮𝟤
𝟨𝖭𝖮𝟤+𝟦(𝖭𝖧𝟤)𝟤𝖢𝖮+𝟦𝖧𝟤𝖮𝟩𝖭𝟤+𝟣𝟤𝖧𝟤𝖮+𝟦𝖢𝖮𝟤

в случае использования мочевины (более дорогостоящего реагента).

В катализаторах применяются оксид титана с добавками ванадия, молибдена или вольфрама, цеолиты, оксиды железа с тонкой плёнкой из фосфатов железа или активированный углерод в виде агломерированных гранул. Материал катализатора подбирается с учётом его цены и долговечности в заданных условиях эксплуатации[11].

Селективное некаталитическое восстановление

Метод Шаблон:Не переведено 5 (СНКВ, Шаблон:Lang-en) получил широкое распространение в мировой энергетике и применяется в России на ТЭЦ. В этом методе в дымовые газы добавляется аммиак или мочевина, которые восстанавливают NO до молекулярного азота. Отказ от использования катализатора позволяет существенно удешевить процесс. Метод был запатентован компанией Exxon Research Engineering в 1975 году[12].

Метод применяется в температурном диапазоне примерно от 1100 до 1400 К и описывается брутто-реакцией

𝟦𝖭𝖮+𝟦𝖭𝖧𝟥+𝖮𝟤𝟦𝖭𝟤+𝟨𝖧𝟤𝖮

При более низких температурах реакция протекает слишком медленно, а при более высоких с ней начинает конкурировать реакция

𝟦𝖭𝖧𝟥+𝟧𝖮𝟤𝟦𝖭𝖮+𝟨𝖧𝟤𝖮

Основная сложность в применении этого метода связана с необходимостью обеспечить смешение реагента с дымовыми газами именно в заданном температурном окне и пребывание в нём в течение 200—500 мс[13].

Примечания

Шаблон:Примечания

Литература

Обзоры

Ссылки

  • Химия NOx — видеозапись лекции профессора Майкла Пиллинга на летней школе по горению 2013 года в Принстонском университете (на английском языке, слайды к лекции).

Шаблон:Оксиды азота Шаблон:Хорошая статья