Задача о предписанной скалярной кривизне

Материал из testwiki
Перейти к навигации Перейти к поиску

Задача о предписанной скалярной кривизне заключается в построении римановой метрики с заданной скалярной кривизной. Эта задача в основном решена в статье Каждана и Уорнера.[1]

Формулировка

Для данного закрытого, гладкого многообразия M и гладкой вещественной функции f:M построить риманову метрику на M, для которой скалярная кривизна равна f.

Решения

  • Если размерность многообразия M три или выше, то любая гладкая функция f:M, принимающая отрицательное значение является скалярной кривизной некоторой римановой метрики.

Предположение о том, что f должна быть отрицательна в каких-то точках, необходимо, поскольку не все многообразия допускают метрику со строго положительной скалярной кривизной. Например, таким является трёхмерный тор. Однако верно следующее.

  • Если M допускает одну метрику со строго положительной скалярной кривизной, то любая гладкая функция f:M является скалярной кривизной некоторой римановой метрики на M.

См. также

Примечания

Шаблон:Примечания

  1. Kazdan, J., and Warner F. Scalar curvature and conformal deformation of Riemannian structure. Journal of Differential Geometry. 10 (1975). 113—134.