Целозначный многочлен: различия между версиями
imported>InternetArchiveBot Спасено источников — 1, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5 |
(нет различий)
|
Текущая версия от 03:54, 28 декабря 2023
Целозначный многочлен — многочлен, принимающий целые значения для целого аргумента.
Целозначный многочлен не обязательно имеет целые коэффициенты: например, целозначен, поскольку одно из чисел и чётно.
Порождающие целозначные многочлены
Целозначные многочлены одной переменной степени не выше образуют свободную абелеву группу на образующих. Например, для (то есть , , и т. д.) или для , где — биномиальные многочлены[1].
Связь с алгебраической геометрией
Пусть — группа Гротендика проективного пространства размерности , то есть абелева группа, порождённая классами векторных расслоений и соотношениями ; в частности, изоморфная . Построим отображение , отправляющее расслоение в его многочлен Гильберта , где — эйлерова характеристика векторного расслоения как когерентного пучка. Тогда и , то есть стандартные целочисленные многочлены имеют ясный геометрический смысл[2].