Искривлённое произведение: различия между версиями
Перейти к навигации
Перейти к поиску
imported>РобоСтася м checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101) |
(нет различий)
|
Текущая версия от 23:15, 13 сентября 2024
Искривлённое произведение римановых, а также псевдоримановых многообразий — обобщение прямого произведения.
Определение
Пусть и — два псевдоримановых многообразия и гладкая положительная функция. Тогда произведение с метрикой называется искривлённым произведением и по функции . Точнее, касательное пространство можно идентифицировать с произведением касательных пространств и значит на нём можно рассмотреть прямую сумму квадратичных форм , она и определяется как метрический тензор в точке.
Искривлённое произведение обычно обозначается .
Функция также называется функцией искривления. Пространство называется базой, а пространство — слоем искривлённого произведения .
Свойства
- Каждый слой в изометричен .
- Каждый уровень глобально изометричен базе .
- Расстояния между точками полностью определяются по базе , двум точкам , функцией и расстоянием между и в слое .
Примеры
- Искривлённое произведение изометрично плоскости Лобачевского.
- Поверхность вращения всегда изометрична искривлённому произведению для некоторой функции искривления и вещественного интервала .
- Многие решения уравнения Эйнштейна, можно представить как искривлённые произведения, например,
Вариации и обобщения
- Искривлённое произведение естественным образом обобщается на произведения метрических пространств с внутренней метрикой.[1]