Гиперплоскость: различия между версиями
imported>Kurban Mammaev м Поправил второе обозначение скалярного произведения, вслед за предыдущим. |
(нет различий)
|
Текущая версия от 13:19, 27 апреля 2022
Гиперпло́скость — подпространство коразмерности 1 в векторном, аффинном пространстве или проективном пространстве; то есть подпространство с размерностью, на единицу меньшей, чем объемлющее пространство.
Например, для двумерного пространства гиперплоскость есть прямая (отражаемая уравнением ), для трёхмерного — плоскость, для четырёхмерного — трёхмерное пространство («трёхмерная плоскость») и т. д.
Уравнение гиперплоскости
Пусть — нормальный вектор к гиперплоскости, тогда уравнение гиперплоскости, проходящей через точку , имеет вид
Здесь — скалярное произведение в пространстве . В частном случае уравнение принимает вид
Расстояние от точки до гиперплоскости
Пусть — нормальный вектор к гиперплоскости, тогда расстояние от точки до этой гиперплоскости задаётся формулой
где — произвольная точка гиперплоскости.