Кэлерово многообразие
Кэлерово многообразие — многообразие с тремя взаимно совместимыми структурами: комплексной структурой, римановой метрикой и симплектической формой.
Названы в честь немецкого математика Эриха Келера.
Определения
Как симплектическое многообразие: кэлерово многообразие — симплектическое многообразие с интегрируемой почти комплексной структурой, которая согласуется с симплектической формой.
Как комплексное многообразие: кэлерово многообразие представляет собой Шаблон:Iw с замкнутой эрмитовой формой. Такая эрмитова форма называется кэлеровой.
Связь между определениями
Пусть — эрмитова форма, — симплектическая форма и — почти комплексная структура. Согласуемость и означает, что форма:
является римановой; то есть положительно определённой. Связь между этими структурами можно выразить тождеством:
Кэлеров потенциал
На комплексном многообразии каждая Шаблон:Iw порождает кэлерову форму
При этом функция называется кэлеровым потенциалом формы .
Локально верно обратное. Точнее, для каждой точки кэлерова многообразия существует окрестность и функция такая, что
- .
При этом называется локальным Кэлеровым потенциалом формы .
Примеры
- Комплексное евклидово пространство со стандартной эрмитовой формой.
- Каждая риманова метрика на ориентируемой поверхности определяет кэлерово многообразие, поскольку замкнутость тривиальна в вещественной размерности два.
- Комплексное проективное пространство с метрикой Фубини — Штуди.
- Индуцированная метрика на комплексное подмногообразии в кэлеровом многообразии.
- В частности, любое Шаблон:Iw и любое проективное алгебраическое многообразие.
- По теореме Кодайры о вложении кэлерово многообразие, допускающее положительное расслоение со слоем прямая, вкладывается в проективное пространство.
- K3-поверхности
- Важным подклассом кэлеровых многообразий являются многообразия Калаби — Яу.
См. также
Литература
- Шаблон:Статья
- Шаблон:Статья
- Шаблон:Книга
- Alan Huckleberry and Tilman Wurzbacher, eds. Infinite Dimensional Kähler Manifolds (2001), Birkhauser Verlag, Basel ISBN 3-7643-6602-8.
- Шаблон:Книга
- Шаблон:Книга