Лагранжиан Гейзенберга — Эйлера

Материал из testwiki
Версия от 19:37, 9 марта 2025; imported>InternetArchiveBot (Добавление ссылок на электронные версии книг (20250309sim)) #IABot (v2.0.9.5) (GreenC bot)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Лагранжиан Гейзенберга — Эйлера описывает нелинейную динамику электромагнитного поля в вакууме. Был впервые получен Вернером Гейзенбергом и Гансом Эйлером[1] в 1936 году для учёта влияния эффектов квантовой электродинамики на свободное электромагнитное поле через рождение пар виртуальных электронов-позитронов.

Физические предпосылки

Рис. 1. Диаграмма Фейнмана для поляризации вакуума (однопетлевое приближение)
Рис. 2. Фейнмановская диаграмма дельбрюковского рассеяния

При выводе формулы эффекты поляризации вакуума учитываются в однопетлевом приближении, справедливом для электромагнитных полей, мало изменяющихся на расстояниях порядка комптоновской длины волны. Пример такого процесса изображён на рисунке для одной входящей и одной выходящей фотонной линии. Замкнутая петля учитывает рождение электрона (верхняя часть петли) и позитрона (нижняя часть петли) в левой вершине и их уничтожение в правой. С учётом таких процессов плотность лагранжиана в отличие от классической электродинамики выражается не только через инварианты поля, =12(𝐁2𝐄2) и 𝒢=𝐄𝐁, но и через постоянную тонкой структуры, α1137, а также массу, m, и заряд, e, электрона[2]. Лагранжиан для сколь угодно сильных полей, общая формула: =18π20exp(m2s)[(es)2Recosh(es2(+i𝒢))Imcosh(es2(+i𝒢))𝒢23(es)21]dss3

В случае слабых полей: =12(𝐄2𝐁2)+2α245m4[(𝐄2𝐁2)2+7(𝐄𝐁)2]

В частности, на основе полученного лагранжиана можно вычислить амплитуду рассеяния фотона на фотоне[3] (см. рисунок 2), которая для свободных фотонов оказывается исключительно малой. Тем не менее оказывается возможным наблюдение рассеяния Дельбрюка при взаимодействии гамма-фотона с виртуальным фотоном (например, в кулоновском поле атомного ядра)[4].

Эксперименты и наблюдения

Расщепление фотона в сильном магнитном поле было измерено в 2002 году[5]. Представляет интерес возможность астрофизических наблюдений предсказываемого в рамках формализма Гейзенберга — Эйлера двойного лучепреломления для электромагнитных волн в сверхсильных магнитных полях. В 2016 году группа астрономов из Италии, Польши и Великобритании сообщила[6] о наблюдении света, излучаемого нейтронной звездой (пульсар RX J1856.5−3754). Напряжённость исключительно сильного магнитного поля вблизи звезды составляет 1013 Гс, так что эффект двойного лучепреломления может быть достаточно заметным и объяснять наблюдавшуюся степень поляризации света 16%. Однако этот результат не общепризнан, и есть исследователи, считающие, что приблизительность модели нейтронной звезды при неизвестном направлении её магнитного поля не позволяет сделать определённые выводы[7].

Примечания

Шаблон:Примечания