Гномон (фигура)

Материал из testwiki
Версия от 16:20, 14 сентября 2024; imported>РобоСтася (checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101))
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Шаблон:Значения

Закрашенная фигура АEFGCB - Гномон, для DGFE

Гномонгеометрическая фигура, которая при соответствующем соединении с другой фигурой, образует фигуру, ей подобную.

Например, если взять параллелограмм ABCD и построить подобный параллелограмм DEFG с общим углом D, то фигура ABCGFE будет являться гномоном для фигуры DEFG.

Гномон и фигурные числа

Пифагорейцы исследовали фигурные числа. Стало известно, что эти числа можно получить, добавив гномон к предыдущему фигурному числу[1].

Например, гномоном четырехугольного числа (квадрата) является нечетное число. Общий вид нечётного числа — 2n+1, число n может быть равно 1, 2, 3... Например, если рассмотреть квадрат 8 (он равен 64), то он будет выглядеть как таблица:

82= 64
8 8 8 8 8 8 8 8
8 7 7 7 7 7 7 7
8 7 6 6 6 6 6 6
8 7 6 5 5 5 5 5
8 7 6 5 4 4 4 4
8 7 6 5 4 3 3 3
8 7 6 5 4 3 2 2
8 7 6 5 4 3 2 1

Чтобы из таблицы, демонстрирующей квадрат числа n, получить таблицу для демонстрации квадрата числа n+1, нужно добавить к таблице 2n+1 дополнительные клетки: по одному числу слева от каждой строки, по одному числу сверху от каждого столбца и ещё одно число в угол. Например, чтобы из таблицы для семёрки получить таблицу для восьмёрки, нужно добавить к таблице 15 элементов. Число клеток (в данном примере 64) и является квадратом числа.

С помощью этого метода можно доказать, что сумма первых n нечетных чисел равна n2. Так, в упомянутой фигуре всего 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 клетки, а это и есть 82.

См. также

Примечания

Шаблон:Примечания