Гипотеза Уиллмора
Гипотеза Уиллмора — это нижняя граница энергии Уиллмора тора. Гипотеза носит имя английского математика Томаса Уиллмора, который сформулировал её в 1965 годуШаблон:Sfn. Доказательство гипотезы анонсировано Маркишем и Невишом в 2012 году и опубликовано в 2014 годуШаблон:SfnШаблон:Sfn.
Энергия Уиллмора
Шаблон:Основная статья Пусть будет гладким погружением компактной ориентированной поверхности. Пусть дано многообразие M и риманова метрика, порождённая погружением . Пусть будет средней кривизной (среднее арифметическое главных кривизн κ1 и κ2 в каждой точке). В такой нотации энергия Уиллмора W(M) многообразия M задаётся выражением
Нетрудно доказать, что энергия Уиллмора удовлетворяет неравенству с равенством тогда и только тогда, когда многообразие M является вложенной сферой.
Утверждение
Вычисление величины W(M) для нескольких примеров даёт повод предположить, что должна быть граница, лучшая чем для поверхностей с родом . В частности, вычисление W(M) для тора с различными симметриями привели Уиллмора в 1965 году к следующей гипотезе, которая теперь носит его имя
- Для любого тора M, гладко погружённого в R3, выполняется неравенство .
В 1982 году Питер Ли и Яу Шинтун доказали гипотезу в невложенном случае, показав, что если является погружением компактной поверхности, которая не является вложением, то W(M) не менее Шаблон:Sfn.
В 2012 году Фернанду Кода Маркиш и Андре Невиш доказали гипотезу во вложенном случае с помощью Шаблон:Не переведено 5Шаблон:SfnШаблон:Sfn. Мартин Шмидт заявил о доказательстве в 2002 годуШаблон:Sfn, но работу не приняли для публикации ни в один рецензируемый математический журнал (хотя работа не содержала доказательство гипотезы Уиллмора, Шмидт доказал некоторые другие важные гипотезы в работе). До доказательства Маркиша и Невиша гипотеза Уиллмора была уже доказана для многих специальных случаев, таких как трубчатый тор (самим Уилмором) и торы вращения (Лангером и Сингером)Шаблон:Sfn.