Конденсат Бозе — Эйнштейна

Материал из testwiki
Перейти к навигации Перейти к поиску

Конденса́т Бо́зе—Эйнште́йна (бо́зе-эйнште́йновский конденса́т, бо́зе-конденса́т) — агрегатное состояние вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли кельвина). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях, и квантовые эффекты начинают проявляться на макроскопическом уровне.

Теоретически предсказан как следствие из законов квантовой механики Альбертом Эйнштейном на основе работ Шатьендраната Бозе в 1925 году[1]. Шаблон:Nobr спустя, в 1995 году, первый бозе-конденсат был получен в Объединённом институте лабораторной астрофизики (JILA) (относящемся к Университету штата Колорадо в Боулдере и Национальному институту стандартов) Эриком Корнеллом и Карлом Виманом. Учёные использовали газ из атомов рубидия, охлаждённый до Шаблон:Nobr (нК) (1,7Шаблон:E К). За эту работу им, совместно с Вольфгангом Кеттерле из Массачусетского технологического института, была присуждена Нобелевская премия по физике 2001 года.

Теория

Замедление атомов с использованием охлаждающей аппаратуры позволяет получить сингулярное квантовое состояние, известное как конденсат Бозе, или Бозе — Эйнштейна. Результатом усилий Бозе и Эйнштейна стала концепция бозе-газа, подчиняющегося статистике Бозе — Эйнштейна, которая описывает статистическое распределение тождественных частиц с целым спином, называемых бозонами. Бозоны, которыми являются, например, и отдельные элементарные частицы — фотоны, и целые атомы, могут находиться друг с другом в одинаковых квантовых состояниях. Эйнштейн предположил, что охлаждение атомов — бозонов до очень низких температур заставит их перейти (или, по-другому, сконденсироваться) в наинизшее возможное квантовое состояние. Результатом такой конденсации станет возникновение новой фазы вещества.

Этот переход возникает ниже критической температуры, которая для однородного трёхмерного газа, состоящего из невзаимодействующих частиц без каких-либо внутренних степеней свободы, определяется формулой

Tc=(nζ(3/2))2/3h22πmkB,

где Tc — критическая температура, n — концентрация частиц, m — масса, h — постоянная Планка, kB — постоянная Больцмана, ζ — дзета-функция Римана, ζ(3/2)=2,6124.

Шаблон:Hider

Модель Эйнштейна

Рассмотрим набор из N невзаимодействующих частиц, каждая из которых может находиться в двух состояниях, |0 и |1. Если энергии обоих состояний одинаковы, то все возможные конфигурации равновероятны.

Для различимых частиц имеется 2N различных конфигураций, поскольку каждая частица независимо и с равной вероятностью попадает в состояния |0 или |1. При этом практически во всех состояниях количество частиц в состоянии |0 и в состоянии |1 почти равно. Это равновесие является статистическим эффектом: чем меньше разность между количествами частиц в обоих состояниях, тем большим количеством конфигураций (микросостояний) системы она реализуется.

Однако если мы считаем частицы неразличимыми, то система имеет всего лишь N+1 различных конфигураций. Каждой конфигурации можно сопоставить число K частиц, находящихся в состоянии |1NK частиц, находящихся в состоянии |0); при этом K может изменяться от 0 до N. Поскольку все эти конфигурации равновероятны, то статистически никакой концентрации не происходит — доля частиц, находящихся в состоянии |1, распределена равномерно по отрезку Шаблон:Nobr. Конфигурация, когда все частицы находятся в состоянии |0, реализуется с той же вероятностью, что и конфигурация с половиной частиц в состоянии |0 и половиной — в состоянии |1, или конфигурация со всеми частицами в состоянии |1.

Если теперь предположить, что энергии двух состояний различны (для определённости, пусть энергия частицы в состоянии |1 выше, чем в состоянии |0, на величину E), то при температуре T частица будет с большей вероятностью находиться в состоянии |0. Отношение вероятностей равно exp(E/kBT).

В случае различимых частиц их количество в первом и втором состояниях не будет равно, но отношение населённостей будет всё же близко к единице вследствие вышеуказанного статистического стремления системы к конфигурациям, где разность населённостей невелика (эти макросостояния обеспечиваются наибольшим числом конфигураций).

Напротив, когда частицы неразличимы, распределение населённостей существенно сдвигается в пользу состояния |0, и с увеличением числа частиц этот сдвиг будет увеличиваться, поскольку нет никакого статистического давления в сторону малой разности населённостей, и поведение системы определяется лишь большей вероятностью для частицы (при любой конечной температуре) занять более низкоэнергетический уровень.

Каждое значение K задаёт для неразличимых частиц определённое состояние системы, вероятность которого описывается больцмановским распределением с учётом того, что энергия системы в состоянии K равна KE (поскольку ровно K частиц занимают уровень с энергией E). Вероятность нахождения системы в этом состоянии:

P(K)=CeKE/kBT=CpK.

Для достаточно больших N нормировочная константа C равна (1p). Ожидаемое число частиц в состоянии |1 в пределе N равно n>0Cnpn=p/(1p). При больших N эта величина практически перестаёт расти и стремится к константе, то есть при большом числе частиц относительная населённость верхнего уровня пренебрежимо мала. Таким образом, в термодинамическом равновесии большинство бозонов будут находиться в состоянии с наименьшей энергией, и лишь малая доля частиц будет в другом состоянии, вне зависимости от того, насколько мала разница уровней энергии.

Рассмотрим теперь газ из частиц, каждая из которых может находиться в одном из импульсных состояний, которые пронумерованы и обозначены как |k. Если число частиц гораздо меньше, чем число доступных при данной температуре состояний, все частицы будут находиться на разных уровнях, то есть газ в этом пределе ведёт себя как классический. При увеличении плотности или уменьшении температуры число частиц на один доступный уровень энергии увеличивается, и в какой-то момент число частиц в каждом состоянии дойдёт до максимально возможного числа частиц в данном состоянии. Начиная с этого момента, все новые частицы будут вынуждены переходить в состояние с наименьшей энергией.

Чтобы рассчитать температуру фазового перехода при данной плотности, необходимо проинтегрировать по всем возможным импульсам выражение для максимального числа частиц в возбуждённом состоянии, p/(1p):

N=Vd3k(2π)3p(k)1p(k)=Vd3k(2π)31ek22mkBT1,
p(k)=ek22mkBT.

При вычислении этого интеграла и подстановке множителя Шаблон:Hbar для обеспечения требуемых размерностей получается формула для критической температуры из предыдущего раздела. Таким образом, этот интеграл определяет критическую температуру и концентрацию частиц, соответствующие условиям пренебрежимо малого химического потенциала. Согласно статистике Бозе — Эйнштейна, μ не обязано строго равняться нулю для возникновения бозе-конденсата; однако μ меньше энергии основного состояния системы. Ввиду этого, при рассмотрении большинства уровней химический потенциал может считаться приблизительно нулевым, за исключением случаев, когда исследуется основное состояние.

История

В 1924 году в журнале Zeitschrift für Physik вышла статья Шатьендраната Бозе о квантовой статистике световых квантов (теперь называемых фотонами), в которой он вывел квантовый закон излучения Планка без какой-либо ссылки на классическую физику. Сначала Бозе послал эту статью Эйнштейну, тот был так впечатлён, что сам перевёл документ с английского на немецкий язык и передал его Бозе для публикации[2]. Рукопись Эйнштейна долгое время считалась потерянной, но в 2005 году была найдена в библиотеке Лейденского университета[3].

В 1925 году, на основе работы Бозе, Эйнштейн теоретически предсказал существование конденсата Бозе — Эйнштейна, как следствие из законов квантовой механики[1]. Затем Эйнштейн расширил идеи Бозе в других работах[4][5]. Результатом их усилий стала концепция бозе-газа, который управляется статистикой Бозе — Эйнштейна. Она описывает статистическое распределение неразличимых частиц с целочисленным спином, теперь называемых бозонами. Бозоны, которые включают в себя фотоны, а также атомы, такие как гелий-4, могут занимать одно и то же квантовое состояние. Эйнштейн предположил, что охлаждение бозонных атомов до очень низкой температуры приведёт к их падению (или «конденсации») в самое низкое доступное квантовое состояние, что приведёт к новой форме материи.

В 1938 году Фриц Лондон предположил, что конденсат Бозе — Эйнштейна является механизмом возникновения сверхтекучести в 4He и сверхпроводимости[6].

В 1995 году Эрику Корнеллу и Карлу Вимену из Национального института стандартов и технологий США при помощи лазерного охлаждения удалось охладить около 2 тысяч атомов рубидия-87 до температуры Шаблон:Nobr и экспериментально подтвердить существование конденсата Бозе — Эйнштейна в газах, за что они совместно с Вольфгангом Кеттерле, который четыре месяца спустя получил конденсат Бозе — Эйнштейна из атомов натрия с использованием принципа удержания атомов в магнитной ловушке, в 2001 году были удостоены Нобелевской премии по физике[7].

В 2000 году группе учёных из Гарвардского университета удалось замедлить свет до скорости много меньшей, чем Шаблон:Nobr, направив его на конденсат Бозе — Эйнштейна рубидия[8][9]. До этого наименьшая официально зарегистрированная скорость света в среде была чуть больше Шаблон:Nobr — сквозь пары натрия при температуре Шаблон:Nobr[10].

В 2010 году был впервые получен бозе-эйнштейновский конденсат фотонов[11][12][13].

К 2012 году, используя сверхнизкие температуры Шаблон:Nowrap и ниже, удалось получить конденсаты Бозе — Эйнштейна для множества отдельных изотопов: (7Li, 23Na, 39K, 41K, 85Rb, 87Rb, 133Cs, 52Cr, 40Ca, 84Sr, 86Sr, 88Sr, 174Yb, 164Dy, и 168Er)[14].

В 2014 году сотрудникам Лаборатории холодного атома (Cold Atom Laboratory, CAL) НАСА и учёным из Калифорнийского технологического института в Пасадине удалось создать конденсат Бозе — Эйнштейна в земном прототипе установки, предназначенной для работы на Международной космической станции[15]. Полнофункциональная установка для создания конденсата Бозе — Эйнштейна в условиях невесомости была отправлена на МКС летом 2018 года. В 2020 году на ней был впервые получен конденсат Бозе — Эйнштейна на борту МКС[16].

В 2018 году российские физики под руководством Игоря Ткачёва разработали теорию, согласно которой могут существовать объекты размером со звезду, состоящие из бозонов, которые при взаимодействии посредством гравитации формируют конденсат Бозе — Эйнштейна за конечное время, эти гипотетические объекты являются кандидатами на роль холодной тёмной материи[17].

В 2020 году исследователи сообщили о создании сверхпроводящего конденсата Бозе — Эйнштейна и о том, что, по-видимому, существует «плавный переход между» режимами БЭК и сверхпроводимостью в теории Бардина–Купера–Шриффера[18][19].

В 2022 году исследователи сообщили о первом создании конденсата Бозе — Эйнштейна в непрерывном режиме. Ранее из-за ограничений возможностей испарительного охлаждения все исследователи были ограничены лишь импульсным режимом работы с БЭК, включающим очень неэффективный рабочий цикл, при котором более 99 % атомов теряются до перехода в состояние БЭК. Создание условия для конденсации конденсата Бозе — Эйнштейна в непрерывном режиме стало важной вехой экспериментальных исследований БЭК[20].

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Навигация

Шаблон:ВС Шаблон:Состояния материи

  1. 1,0 1,1 A.Douglas Stone, Chapter 24, The Indian Comet, in the book Einstein and the Quantum, Princeton University Press, Princeton, New Jersey, 2013.
  2. Шаблон:Статья
  3. Шаблон:Cite web
  4. Шаблон:Статья
  5. Шаблон:Книга
  6. London, F. Superfluids. — Vol. I and II, (reprinted New York: Dover, 1964)
  7. Шаблон:Cite web
  8. Шаблон:Wayback Учёные замедлили скорость света до Шаблон:Nobr в секунду Шаблон:Wayback // ScienceBlog.ru — научный блог.
  9. Шаблон:Статья
  10. Шаблон:Статья
  11. Шаблон:Cite news
  12. Шаблон:Cite news
  13. Шаблон:Статья
  14. Шаблон:Статья
  15. Elizabeth Landau Cold Atom Laboratory Creates Atomic Dance Шаблон:Wayback // NASA.
  16. Шаблон:Cite web
  17. Шаблон:Статья
  18. Шаблон:Cite news
  19. Шаблон:Cite journal
  20. Шаблон:Cite journal