Квантовое состояние

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Другие значения Шаблон:Физическая теория Квантовое состояние — любое возможное состояние, в котором может находиться квантовая система. Чистое квантовое состояние может быть описано:

Эти описания математически равнозначны. В общем случае квантовое состояние (смешанное) принципиально не может быть описано волновой функцией и должно быть описано матрицей плотности, являющейся неотрицательным самосопряжённым оператором с единичным следом. Квантовые состояния можно интерпретировать как статистические ансамбли с некоторыми фиксированными квантовыми числами.

Распределение плотности вероятности для электрона в атоме водорода, находящемся в различных состояниях.

Векторы состояний

Для описания возможных состояний заданной квантовой системы применяется математический аппарат гильбертова пространства , позволяющий практически полностью описать всё, что может происходить с системой.

Для описания квантового состояния в этом случае вводится так называемый вектор состояния (амплитуда состояния), представляющий собой множество математических величин, которое полностью описывает квантовую систему. К примеру, множество 4 чисел {n ,  , m , ms} определяет состояние электрона в атоме водорода, и называются квантовыми числами электрона.

Подобная конструкция оказывается возможной благодаря принципу суперпозиции для квантовых систем. Он проявляется в том, что если существуют два возможных состояния квантовой системы, причём в первом состоянии некоторая наблюдаемая величина может принимать значения p1, p2, …, а во втором — q1, q2,… , то существует и состояние, называемое их суперпозицией, в котором эта величина может принимать любое из значений p1, p2, …, q1, q2,…. Количественное описание этого явления приведено ниже.

Обозначения бра-кет

Шаблон:Main Будем обозначать вектор состояния, соответствующий состоянию ψ, как |ψ. Сопряжённый вектор, соответствующий состоянию ψ, будем обозначать как ψ|. Скалярное произведение векторов |ψ и |ϕ будем обозначать как ϕ|ψ, а образ вектора |ψ под действием оператора будем обозначать |ψ. Символ ψ| называется бра (англ. bra), а символ ψ, как |ψ — кет (англ. ket). Подобные обозначения в целом согласуются с обозначениями обычной линейной алгебры, но более удобны в квантовой механике, так как позволяют более наглядно и коротко называть используемые векторы. Такие обозначения были впервые введены Дираком. Названия векторов образованы разбиением слова bracket (скобка) на две звучные части — bra и ket.

Математический формализм

Шаблон:Main Всякий ненулевой вектор из пространства соответствует некому чистому состоянию. Однако векторы, различающиеся лишь умножением на ненулевое комплексное число, отвечают одному физическому состоянию. Иногда полагают, что вектор состояния |ψ обязан быть «нормирован на единицу»: ψ|ψ=1 — любой ненулевой вектор приобретает это свойство, если разделить его на свою норму ψ|ψ.

Если мы рассмотрим два различных состояния, то суперпозиции (всевозможные линейные комбинации) пары соответствующих им векторов дадут двумерное линейное комплексное пространство. Соответственное множество физических состояний будет представлять двумерную поверхность — сферу Римана.

При рассмотрении квантовой системы, состоящей из двух подсистем, пространство состояний строится в виде тензорного произведения. Подобные системы, помимо комбинаций состояний своих подсистем, имеют также и сцепленные (запутанные) состояния.

«Количество состояний»

Если система имеет хотя бы два физически различных состояния, то мощность множества возможных векторов состояния (даже с точностью до умножения на комплексное число) бесконечна. Однако под количеством состояний квантовой системы подразумевают количество линейно независимых состояний, то есть размерность пространства . Это вполне соответствует интуиции, поскольку описывает количество возможных исходов измерения; к тому же при тензорном произведении (то есть построении составной системы) размерности пространств перемножаются.

В контексте рассмотрения замкнутой квантовой системы (то есть решения уравнения Шрёдингера) под состояниями могут пониматься только стационарные состояния — собственные векторы гамильтониана, отвечающие различным уровням энергии. В случае конечномерного пространства и при отсутствии вырождения число уровней энергии (и соответствующих им состояний) будет равно размерности пространства.

Чистое состояние

Чистое состояние — это полностью указанное квантовое состояние. Если данный квантовый объект (например, какая-то элементарная частица) находится в чистом состоянии, это означает, что у нас есть вся информация о ней. Только чистые состояния полностью можно описать волновыми функциями.

См. также

Литература

Шаблон:Rq Шаблон:ВС