Критерий Граббса
Критерий Граббса — статистический тест, используемый для определения выбросов в одномерном наборе данных, подчиняющихся нормальному закону распределения. Был предложен в 1950 году Франком Граббсом[1].
Определение
Критерий Граббса основан на предположении о нормальном распределении. Таким образом, перед расчётом критерия Граббса необходимо проверить данные на нормальное распределение[2]. Однако в ГОСТ Р 8.736-2011 "Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения" при статистической обработке группы результатов прямых многократных независимых измерений проверяют наличие грубых погрешностей с использованием критерия Граббса (и при необходимости исключают их) и лишь затем проверяют гипотезу о принадлежности результатов измерений нормальному распределению.
Критерий Граббса определяет один выброс за одну итерацию. Этот выброс исключается из набора данных и тест повторяется до тех пор, пока не будут обнаружены все выбросы. Тем не менее, множественные итерации изменяют вероятность определения и критерий не следует применять при 3 или менее значениях, так как в такой ситуации часто большинство точек оказываются идентифицированы как выбросы.
Критерий Граббса определён для гипотез:
- H0: В наборе данных нет выбросов
- Ha: В наборе данных присутствует как минимум один выброс
Критерий Граббса рассчитывается как:
где и означают выборочное среднее и среднеквадратичное отклонение соответственно. Значение критерия Граббса показывает максимальное абсолютное отклонение от выборочного среднего в единицах среднеквадратичного отклонения.
Этот способ расчёта относится к двусторонней версии теста. Критерий Граббса также может быть определён как односторонний тест. Для определения того, является ли минимальное значение выбросом, рассчитывается критерий:
где Ymin означает минимальное значение. Для определения того, является ли максимальное значение выбросом, рассчитывается критерий:
где Ymax означает максимальное значение.
Для Шаблон:Не переведено 3 гипотеза об отсутствии выбросов отклоняется с уровнем значимости α, если:
где tα/(2N),N−2 означает максимальное Шаблон:Не переведено 3 распределения Стьюдента с N − 2 степенями свободы и уровнем значимости α/(2N). Для одностороннего критерия α/(2N) следует заменить на α/N.
Сопутствующие методики
Некоторые Шаблон:Не переведено 3 могут и должны использоваться для определения выбросов. Простой Шаблон:Не переведено 3, диаграмма размаха или гистограмма отображают очевидные выбросы. Шаблон:Не переведено 3 также может быть полезен.
См. также
Примечания
Ссылки
- ↑ Шаблон:СтатьяШаблон:Ref-en
- ↑ Engineering and Statistics Handbook, paragraph 1.3.5.17, http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm Шаблон:WaybackШаблон:Ref-en