Отражение (физика)

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Значения

два отражения: от перьев птицы и от воды

Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

В акустике отражение является причиной эха и используется в гидролокации. В геологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света: отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.

История

Впервые закон отражения упоминается в «Катоптрике» Евклида, датируемой примерно 300 годом до н. э. Шаблон:Дополнить раздел

Законы отражения. Формулы Френеля

Шаблон:Main Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части[1]. Широко распространённая, но менее точная формулировка «угол отражения равен углу падения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает об интенсивности отражённого света.

Шаблон:Начало скрытого блока

Пусть k лежит в плоскости чертежа. Пусть ось x направлена горизонтально, ось y — вертикально. Из соображений симметрии следует, что k, k и kдолжны лежать в одной плоскости.

Выделим из падающего луча плоскополяризованную составляющую, у которой угол между E и плоскостью произволен. Тогда если выбрать начальную фазу равной нулю, то

  • E=Emei(ωtkr)=Emeωtkxxkyy;
  • E=E'mei(ωtkr)=E'meωtk'xxk'yy+α;
  • E=E'mei(ωtkr)=E'meωtk'xxk'yy+α.

Результирующее поле в первой и второй среде равны соответственно

  • E1=E+E=Emeωtkxxkyy+E'meωtk'xxk'yy+α;
  • E2=E=E'meωtk'xxk'yy+α.

Очевидно, что тангенциальные составляющие E1 и E2 должны быть равны на границе раздела то есть при y=0.

Тогда

Emeωtkxxkyy+E'meωtk'xxk'yy+α=E'meωtk'xxk'yy+α

Для того, чтобы последнее уравнение выполнялось для всех t, необходимо, чтобы ω=ω=ω, а для того, чтобы оно выполнялось при всех x, необходимо, чтобы

kx=k'x=k'xksinα=ksinα=ksinαωv1sinα=ωv1sinα=ωv2sinα,
где
v1 и v2 — скорости волн в первой и второй среде соответственно.

Отсюда следует, что α=α

Шаблон:Конец скрытого блока


Сдвиг Фёдорова

Сдвиг Фёдорова — явление малого (меньше длины волны) бокового смещения луча света с круговой или эллиптической поляризацией при полном внутреннем отражении. В результате смещения отражённый луч не лежит в одной плоскости с падающим лучом, как это декларирует закон отражения света геометрической оптики.

Явление теоретически предсказано Ф. И. Фёдоровым в 1954 году, позже обнаружено экспериментально.

Механизм отражения

Шаблон:Нет ссылок в разделе В классической электродинамике, свет рассматривается как электромагнитная волна, которая описывается уравнениями Максвелла.

  • При попадании электромагнитной волны (свет) на поверхность диэлектрика: возникают малые колебания диэлектрической поляризации в отдельных атомах, в результате чего каждая частица излучает вторичные волны во всех направлениях (как антенна-диполь). Все эти волны складываются и — в соответствии с принципом Гюйгенса — Френеля — дают зеркальное отражение и преломлениеШаблон:ПрояснитьШаблон:Нет АИ.
  • При попадании электромагнитной волны (свет) на поверхность проводника: возникают колебания электронов (электрический ток), электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

В зависимости от резонансной частоты колебательных контуров в молекулярной структуре вещества при отражении излучается волна определённой частоты (определённого цвета). Так предметы приобретают цвет. Хотя цвет объекта определяется не только свойствами отражённого света (см. Цветовое зрение и Физиология восприятия цвета).

Виды отражения

θi = θr.
Угол падения равен углу отражения

Шаблон:Переработать раздел Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное отражение

Зеркальное отражение света отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости падения, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения; 2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от угла падения и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения показателей преломления n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

(n2n1)2(n2+n1)2

В важном частном случае нормального падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.

Полное внутреннее отражение

Шаблон:Main Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).

С увеличением угла падения i, угол преломления также возрастает, при этом интенсивность отражённого луча растёт, а преломлённого — падает (их сумма равна интенсивности падающего луча). При некотором критическом значении i=ik интенсивность преломлённого луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления равным 90°:

sinik=n2/n1

Диффузное отражение света

Шаблон:Main

При отражении света от неровной поверхности отражённые лучи расходятся в разные стороны (см. Закон Ламберта). По этой причине нельзя увидеть своё отражение, глядя на шероховатую (матовую) поверхность. Диффузным отражение становится при неровностях поверхности порядка длины волны и более. Таким образом, одна и та же поверхность может быть матовой, диффузно-отражающей для видимого или ультрафиолетового излучения, но гладкой и зеркально-отражающей для инфракрасного излучения.

Примечания

Ссылки

Шаблон:Навигация

Шаблон:Нет ссылок