Постоянная решётки

Материал из testwiki
Перейти к навигации Перейти к поиску
Определение параметров элементарной кристаллической ячейки в виде параллелепипеда с параметрами длины рёбер Шаблон:Math и с углами между рёбрами Шаблон:Math

Постоя́нная решётки, или параметр решётки — размеры элементарной кристаллической ячейки кристалла. В общем случае элементарная ячейка представляет собой параллелепипед с различными длинами рёбер, обычно эти длины обозначают как Шаблон:Math. Но в некоторых частных случаях кристаллической структуры дли́ны этих рёбер совпадают. Если к тому же выходящие из одной вершины рёбра равны и взаимно перпендикулярны, то такую структуру называют кубической. Структуру с двумя равными рёбрами, находящимися под углом 120 градусов, и третьим ребром, перпендикулярным им, называют гексагональной.

Принято считать что, параметры элементарной ячейки описываются 6 числами: 3 длинами рёбер и 3 углами между рёбрами, принадлежащими одной вершине параллелепипеда.

Например, элементарная ячейка алмаза — кубическая и имеет параметр решётки Шаблон:Nobr при температуре Шаблон:Nobr.

В литературе обычно не приводят все шесть параметров решётки, только среднюю длину рёбер ячейки и тип решётки.

Размерность параметров решётки Шаблон:Math, Шаблон:Math, Шаблон:Math в СИ — длина. Величину, ввиду малости, обычно приводят в нанометрах или ангстремах (Шаблон:Nobr).

Параметры решётки могут быть экспериментально определены методами рентгеноструктурного анализа (исторически первый метод, развитый в начале XX века) или, начиная с конца XX века, — атомно-силовой микроскопией. Параметр кристаллической решётки может использоваться в качестве природного эталона длины нанометрового диапазона.[1][2]

Объём элементарной ячейки

Объём элементарной ячейки можно вычислить, зная её параметры (длины и углы параллелепипеда). Если три смежных ребра ячейки представить в виде векторов, то объём ячейки Шаблон:Math равен (с точностью до знака) тройному скалярному произведению этих векторов (то есть скалярному произведению одного из векторов на векторное произведение двух других). В общем случае

V=abc1+2cosαcosβcosγcos2αcos2βcos2γ.

Для моноклинных решёток Шаблон:Math, и формула упрощается до

V=abcsinβ.

Для орторомбических, тетрагональных и кубических решёток угол Шаблон:Math также равен 90°, поэтому[3]

V=abc.

Для тригональных (ромбоэдрических) решёток Шаблон:Math, а также Шаблон:Math, поэтому

V=a31+2cos3α3cos2α.

Слоистые полупроводниковые гетероструктуры

Постоянство параметров решётки разнородных материалов позволяет получить слоистые, с толщиной слоёв в единицы нанометров сэндвичи разных полупроводников. Этот метод обеспечивает получение широкой запрещённой зоны во внутреннем слое полупроводника и используется при производстве высокоэффективных светодиодов и полупроводниковых лазеров.

Согласование параметров решётки

Параметры решётки важны при эпитаксиальном выращивании тонких монокристаллических слоёв другого материала на поверхности иного монокристалла — подложки. При значительной разнице параметров решётки материалов трудно получить монокристалличность и бездислокационность наращиваемого слоя. Например, в полупроводниковой технологии для выращивания эпитаксиальных слоёв монокристаллического кремния в качестве гетероподложки обычно используют сапфир (монокристалл оксида алюминия), так как оба имеют практически равные постоянные решётки, но с разным типом сингонии, у кремния — кубическая типа алмаза, у сапфира — тригональная.

Обыкновенно параметры решётки подложки и наращиваемого слоя выбирают так, чтобы обеспечить минимум напряжений в слое плёнки.

Другим способом согласования параметров решёток является метод формирования переходного слоя между плёнкой и подложкой, в котором параметр решётки изменяется плавно (например, через слой твёрдого раствора с постепенным замещением атомов вещества подложки атомами выращиваемой плёнки, так чтобы параметр решётки слоя твёрдого раствора у самой плёнки совпадал с этим параметром плёнки).

Например, слой фосфида индия-галлия с шириной запрещённой зоны Шаблон:Nobr может быть выращен на пластине арсенида галлия с помощью метода промежуточного слоя.

См. также

Примечания

Шаблон:Примечания

Шаблон:Внешние ссылки Шаблон:Нет ссылок