Правила Фудзиты

Материал из testwiki
Перейти к навигации Перейти к поиску

Правила Фудзиты — набор из семи правил, формально описывающие геометрические построения с помощью плоского оригами, подобным построениям с помощью циркуля и линейки.

Фактически они описывают все возможные способы получения одной новой складки на листе бумаги, путём совмещения уже существующих различных элементов листа — точек и линий. Под линиями подразумеваются края листа или складки бумаги, под точками — пересечения линий. Существенным моментом является то, что сгиб формируется единственной складкой, причём в результате складывания фигура остается плоской.

Часто эти правила называют «аксиомами», хотя с формальной точки зрения аксиомами они не являются.

Правила

Складки в этих правилах существуют не всегда, правило утверждает только, что если такая складка есть, то её «можно» найти.

Правило 1

Пусть заданы две точки p1 и p2, тогда лист можно сложить так, что данные две точки будут лежать на складке. Шаблон:-

Правило 2

Пусть заданы две точки p1 и p2, тогда лист можно сложить так, что одна точка перейдёт в другую. Шаблон:-

Правило 3

Пусть заданы две прямые l1 и l2, тогда лист можно сложить так, что одна прямая перейдёт в другую. Шаблон:-

Правило 4

Пусть заданы прямая l1 и точка p1, тогда лист можно сложить так, что точка попадёт на складку, а прямая перейдёт сама в себя (то есть линия складки будет ей перпендикулярна). Шаблон:-

Правило 5

Пусть заданы прямая l1 и две точки p1 и p2, тогда лист можно сложить так, что точка p2 попадёт на складку, а p1 — на прямую l1. Шаблон:-

Правило 6 (складка Белок)

Пусть заданы две прямые l1 и l2 и две точки p1 и p2, тогда лист можно сложить так, что точка p1 попадёт на прямую l1, а точка p2 попадёт на прямую l2. Шаблон:-

Правило 7

Пусть заданы две прямые l1 и l2 и точка p, тогда лист можно сложить так, что точка p попадёт на прямую l1, а прямая l2 перейдёт сама в себя (то есть линия складки будет ей перпендикулярна). Шаблон:-

Замечания

Все складки в этом списке можно получить как результат последовательного применения правила номер 6. То есть для математика они ничего не добавляют, однако позволяют уменьшить количество сгибов. Система из семи правил является полной в том смысле, что они описывают все возможные способы получения одной новой складки на листе бумаги, путём совмещения уже существующих различных элементов листа. Это последнее утверждение было доказано Лэнгом[1].

Возможные и невозможные построения

Возможные

Все построения являются ничем иным, как решениями какого-либо уравнения, причём коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа. В рамках вышеописанных требований, возможны следующие построения:

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного и кубического корней из исходных чисел (длин отрезков). В частности, при помощи таких построений можно осуществить удвоение куба, трисекцию угла, построение правильного семиугольника.

Невозможные

Решение задачи о квадратуре круга однако остаётся невозможным, так как π — трансцендентное число.

История

Основное правило (номер 6) было рассмотрено Маргеритой Пьяцолла Белок[2], ей же принадлежат первые построения трисекции угла и квадратуры круга с помощью оригами-построений. Складки Белок достаточно для того, чтобы получить складки во всех остальных правилах.

Полный список правил появляется в работе Жака Жюстина[3], который позднее также ссылался на Питера Мессера как на соавтора. Практически одновременно правила 1—6 были сформулированы Фумиаки Фудзитой[4]. Последнее седьмое правило добавил ещё позже Косиро Хатори[5].

Вариации и обобщения

Список возможных построений можно значительно расширить, если позволить создание нескольких складок за один раз. Хотя человек, решивший провести несколько складок за одно действие, на практике столкнется с трудностями физического порядка, тем не менее возможно вывести правила, аналогичные правилам Фудзита и для этого случая[6].

При допущении таких дополнительных правил, возможно доказать следующую теорему:

Любое алгебраическое уравнение степени n может быть решено одновременными (n2)-кратными складками .

Представляет интерес, возможно ли решить то же уравнение складыванием, вовлекающим меньшее количество одновременных складок. Это, несомненно, верно для n=4 и неизвестно для n=5[6].

См. также

Примечания

Шаблон:Примечания

Ссылки

  1. Lang R. Origami and Geometric Constructions Шаблон:Wayback.
  2. Beloch, M. P. Sul metodo del ripiegamento della carta per la risoluzione dei problemi geometrici / Periodico di Mathematiche. — Ser. 4. — Vol. 16. — 1936. — pp. 104—108.
  3. Justin, J. Resolution par le pliage de l’equation du troisieme degre et applications geometriques, reprinted in Proceedings of the First International Meeting of Origami Science and Technology. — H. Huzita ed. — 1989. — pp. 251—261.
  4. Huzita Humiaki Axiomatic Development of Origami Geometry / Proceedings of the First International Meeting of Origami Science and Technology. — Humiaki Huzita, ed. — 1989. — pp. 143—158.
  5. Koshiro Hatori Origami Construction Шаблон:Wayback.
  6. 6,0 6,1 Alperin R. C., Lang R. J. One-, Two- and Multi-Fold Origami Axioms Шаблон:Wayback.