Теория интегрируемых систем
Перейти к навигации
Перейти к поиску
Теория интегрируемых систем — раздел математической физики, изучающий недиссипативные решения дифференциальных уравнений, в том числе уравнений в частных производных. Такие системы имеют соответствующие высшие симметрии.
С-интегрируемые системы
Под С-интегрируемыми понимают такие системы, решения которых могут быть представлены в явном виде не сложнее, чем через квадратуры — интегралы, зависящие от начальных данных задачи.
Примеры
Гамильтоновы интегрируемые системы и метод обратной задачи рассеяния
Метод обратной задачи рассеяния подразумевает, что уравнение в частных производных можно представить в виде пары Лакса — системы двух линейных операторов, условием совместности которых будет рассматриваемая система.
Примеры
есть условие совместности системы
Построение решений
Интегрируемые цепочки
Примеры
См. также
- Солитон
- Нелинейная динамика
- нелинейное уравнение Шредингера
- Уравнение Кортевега — де Фриза
- Уравнение синус-Гордона
Примечания
Литература
- Шаблон:Книга
- Шаблон:Из
- Шаблон:Книга
- Абловиц М., Сигур Х. Солитоны и метод обратной задачи. - М., 1987.
- Лэм Дж., Введение в теорию солитонов, пер. с англ., М.,1983.
- Л. А. Тахтаджян, Л. Д. Фаддеев — Гамильтонов подход в теории солитонов.- М.; Наука, 1986, 527 стр.
- Переломов А. М. Интегрируемые системы классической механики и алгебры Ли. - М., Наука, 1990. - 240 с.