Сопряжённые точки: различия между версиями
Перейти к навигации
Перейти к поиску
imported>Robiteria м орфоргафия (со строчной) |
(нет различий)
|
Текущая версия от 16:36, 18 ноября 2022
Сопряжённые точки — вершины инфинитезимально узкого геодезического двуугольника в Римановом многообразии.
Определение
Предположим, точки р и q лежат на геодезической в Римановом (или псевдоримановом) многообразии. Если существует ненулевое поле Якоби вдоль , которое обращается в нуль в р и в q, тогда точки р и q сопряжены вдоль .
Примеры
- На стандартной сфере , диаметрально противоположные точки сопряжены.
- В евклидовом пространстве нет сопряженных точек.
- Более того, на римановых многообразиях неположительной секционной кривизны, нет сопряженных точек.