Геодезическая

Материал из testwiki
Перейти к навигации Перейти к поиску
Геодезическая линия на поверхности трёхосевого эллипсоида

Геодези́ческая (также геодезическая ли́ния) — кривая определённого типа, обобщение понятия «прямая» для искривлённых пространств.

Конкретное определение геодезической линии зависит от типа пространства. Например, на двумерной поверхности, вложенной в евклидово трёхмерное пространство, геодезические линии — это линии, достаточно малые дуги которых являются на этой поверхности кратчайшими путями между их концами. На плоскости это будут прямые, на круговом цилиндре — винтовые линии, прямолинейные образующие и окружности, на сфере — дуги больших окружностей.

Геодезические линии активно используются в релятивистской физике. Так, пробное тело в общей теории относительности движется по геодезической линии пространства-времени. По сути, временна́я эволюция всех лагранжевых систем может рассматриваться как движение по геодезической в специальном пространстве. Таким образом представима вся теория калибровочных полей.

Дифференциальная геометрия

Многообразия с аффинной связностью

В многообразиях с аффинной связностью геодезическая — это кривая γ(t), удовлетворяющая уравнению

γ˙γ˙=0.

В координатном виде можно переписать это уравнение, используя символы Кристоффеля:

d2xλdt2+Γμνλdxμdtdxνdt=0,

где xμ(t) — координаты кривой.

Иными словами, кривая является геодезической, если параллельно переносимый вдоль неё вектор, бывший касательным к кривой в начальной точке, остаётся касательным везде.

Римановы и псевдоримановы многообразия

В римановых и псевдоримановых пространствах геодезическая определяется как критическая кривая интеграла энергии:

E(γ)=γg(γ(t),γ˙(t))dt,

здесь γ(t) — кривая в пространстве, g — метрика. (В физике этот интеграл принято называть интегралом действия.)

Это условие эквивалентно тому, что:

γ˙γ˙=0

вдоль всей кривой, где обозначает связность Леви-Чивиты.

Метрическая геометрия

В метрических пространствах геодезическая определяется как локально кратчайшая с равномерной параметризацией (часто с натуральным параметром).

Согласно лемме Гаусса, для римановых многообразий это определение задаёт тот же класс кривых, что и дифференциально-геометрическое определение, приведённое выше.

Использование в физике

Геодезические линии активно используются в релятивистской физике. Например, траектория свободно падающего незаряжённого пробного тела в общей теории относительности и вообще в метрических теориях гравитации является геодезической линией наибольшего собственного времени, то есть времени, измеряемого часами, движущимися вместе с телом.

Часто физическую теорию, обладающую действием или выраженную в гамильтоновой форме, можно переформулировать как задачу отыскания геодезических линий на некотором римановом или псевдоримановом многообразии.

См. также

Литература

  • Шаблон:ВТ-ЭСБЕ
  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. — Любое издание.
  • Мищенко А. С., Фоменко А. Т.. Курс дифференциальной геометрии и топологии. — Любое издание.
  • Постников М. М.. Вариационная теория геодезических. — Любое издание.
  • Шаблон:Книга