Галлий

Материал из testwiki
Версия от 01:48, 19 февраля 2025; imported>InternetArchiveBot (Спасено источников — 2, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Шаблон:Карточка химического элемента Шаблон:Элемент периодической системы Га́ллий (химический символ — Ga, от Шаблон:Lang-la) — химический элемент 13-й группы (по устаревшей классификации — главной подгруппы третьей группы, IIIA), четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 31.

Простое вещество галлий — это мягкий хрупкий металл серебристо-белого (по другим данным светло-серого) цвета с синеватым оттенком.

Шаблон:-

История

Существование галлия было научно предсказано Д. И. Менделеевым. При создании периодической системы химических элементов в 1869 г. он, основываясь на открытом им Периодическом законе, оставил вакантные места в третьей группе для неизвестных элементов — аналогов алюминия и кремния (экаалюминий и экасилиций)[1]. Менделеев, основываясь на свойствах соседних, хорошо изученных элементов, достаточно точно описал не только важнейшие физические и химические свойства, но и метод открытия — спектроскопию. В частности, в статье, датированной 11 декабря (29 ноября по старому стилю) 1870 года, опубликованной в «Журнале Русского химического общества»[2], Менделеев указал, что атомный вес экаалюминия близок к 68, удельный вес около 6 г/см3.

Свойства экаалюминия (ожидаемые) и галлия[3]
Свойство Экаалюминий Галлий
Атомная масса ~68 69.723
Удельный вес 5.9 г/см3 5.904 г/см3
Температура плавления Низкая 29.767 °C
Формула оксида M2O3 Ga2O3
Плотность оксида 5.5 г/см3 5.88 г/см3
Гидроксид амфотерный амфотерный

Вскоре галлий был открыт, выделен в виде простого вещества и изучен французским химиком Полем Эмилем Лекоком де Буабодраном. 20 сентября 1875 года. На заседании Парижской академии наук было зачитано письмо Лекока де Буабодрана об открытии нового элемента и изучении его свойств. В письме сообщалось, что 27 августа 1875 года между 3 и 4 часами вечера он обнаружил признаки нового простого тела в образце цинковой обманки, привезённом из рудника Пьерфитт в долине Аржелес (Пиренеи). Так, исследуя спектр образца, Лекок де Буабодран выявил две новые фиолетовые линии, соответствующие длинам волн 404 и 417 нм и свидетельствующие о присутствии в минерале неизвестного элемента. В этом же письме он предложил назвать новый элемент Gallium[4]. Выделение элемента было сопряжено с немалыми трудностями, поскольку содержание нового элемента в руде было меньше 0,2 %. В итоге Лекоку де Буабодрану удалось получить новый элемент в количестве менее 0,1 г и исследовать его. По свойствам новый элемент оказался сходен с цинком.

Бурный восторг вызвало сообщение о названии элемента в честь Франции, по её римскому наименованию. Менделеев, узнав об открытии из опубликованного доклада, обнаружил, что описание нового элемента почти в точности совпадает с описанием предсказанного им ранее экаалюминия. Об этом он отправил письмо Лекоку де Буабодрану, указав, что плотность нового металла определена неверно и должна быть 5,9—6,0, а не 4,7 г/см3. Тщательная проверка показала правоту Менделеева, а сам Лекок де Буабодран писал по этому поводу: Шаблон:Начало цитатыЯ думаю…, нет необходимости указывать на исключительное значение, которое имеет плотность нового элемента в отношении подтверждения теоретических взглядов МенделееваШаблон:Конец цитаты

Открытие галлия и последовавшие вскоре открытия германия и скандия укрепило позиции Периодического закона, ярко продемонстрировав его прогностический потенциал. Менделеев называл Лекока де Буабодрана одним из «укрепителей периодического закона».

Происхождение названия

Поль Эмиль Лекок де Буабодран назвал элемент в честь своей родины Франции, по её латинскому названию — Галлия (Шаблон:Lang)[5].

Существует недокументированная легенда, что в названии элемента его первооткрыватель неявно увековечил и свою фамилию (Шаблон:Lang). Латинское название элемента (Шаблон:Lang) созвучно Шаблон:Lang — «петух» (лат.)[6]. Примечательно, что именно петух Шаблон:Lang (франц.) является символом Франции.

Нахождение в природе

Среднее содержание галлия в земной коре — 19 г/т. Галлий — типичный рассеянный элемент, обладающий двойной геохимической природой. Ввиду близости его кристаллохимических свойств с главными породообразующими элементами (Al, Fe и др.) и широкой возможности изоморфизма с ними галлий не образует больших скоплений, несмотря на значительную величину кларка. Выделяются следующие минералы с повышенным содержанием галлия: сфалерит (0—0,1 %), магнетит (0—0,003 %), касситерит (0—0,005 %), гранат (0—0,003 %), берилл (0—0,003 %), турмалин (0—0,01 %), сподумен (0,001—0,07 %), флогопит (0,001—0,005 %), биотит (0—0,1 %), мусковит (0—0,01 %), серицит (0—0,005 %), лепидолит (0,001—0,03 %), хлорит (0—0,001 %), полевые шпаты (0—0,01 %), нефелин (0—0,1 %), гекманит (0,01—0,07 %), натролит (0—0,1 %). Концентрация галлия в морской воде 3Шаблон:E мг/л[7].

Месторождения

Месторождения галлия известны в Юго-Западной Африке, России, странах СНГ[8].

Физические свойства

Кристаллы галлия
Металлический галлий

Кристаллический галлий имеет несколько полиморфных модификаций, однако термодинамически устойчивой является только одна (I), имеющая орторомбическую (псевдотетрагональную) решётку с параметрами Шаблон:Nobr, Шаблон:Nobr, Шаблон:Nobr[9]. Другие модификации галлия (Шаблон:Math, Шаблон:Math, Шаблон:Math, Шаблон:Math) кристаллизуются из переохлаждённого диспергированного металла и являются нестабильными. При повышенном давлении наблюдались ещё две полиморфные структуры галлия II и III, имеющие, соответственно, кубическую и тетрагональную решётки[9].

Плотность галлия в твёрдом состоянии при температуре 20 °C равна Шаблон:Nobr, жидкий галлий (Шаблон:Nobr) имеет плотность Шаблон:Nobr, то есть при затвердевании объём галлия увеличивается. Это свойство является весьма редким, его проявляют лишь немногие простые вещества и соединения (в частности, вода, кремний, германий, сурьма, висмут и плутоний). Кипит галлий при 2204 °CШаблон:Уточнить. Одной из особенностей галлия является широкий температурный интервал существования жидкого состояния (от 30 и до 2204 °C), при этом он имеет низкое давление пара при температурах до 1100—1200 °C. Удельная теплоёмкость твёрдого галлия в температурном интервале Шаблон:Nobr равна Шаблон:Nobr (Шаблон:Nobr), в жидком состоянии при Шаблон:Nobr удельная теплоёмкость равна Шаблон:Nobr (Шаблон:Nobr).

Удельное электрическое сопротивление в твёрдом и жидком состоянии равны, соответственно, 53,4Шаблон:E Ом·см (при Шаблон:Nobr) и 27,2Шаблон:E Ом·см (при Шаблон:Nobr). Вязкость жидкого галлия при разных температурах равна Шаблон:Nobr при Шаблон:Nobr и 0,578 сантипуаз при Шаблон:Nobr. Поверхностное натяжение, измеренное при 30 °C в атмосфере водорода, равно Шаблон:Nobr. Коэффициенты отражения для длин волн Шаблон:Nobr и Шаблон:Nobr составляют 75,6 % и 71,3 %, соответственно.

Энергии ионизации: Ga → Ga+ (первый электрон) 6,00 эВ, Ga+ → Ga2+ 20,510 эВ, Ga2+ → Ga3+ 30,66 эВ[10].

Изотопы

Шаблон:Main Природный галлий состоит из двух стабильных изотопов 69Ga (изотопная распространённость Шаблон:Nobr) и 71Ga (Шаблон:Nobr). Поперечное сечение захвата тепловых нейтронов равно для них Шаблон:Nobr и Шаблон:Nobr, соответственно[9].

Помимо них, известны 29 искусственных радиоактивных изотопов галлия с массовыми числами от 56Ga до 86Ga и по крайней мере 3 изомерных состояний ядер. Наиболее долгоживущие радиоактивные изотопы галлия — это 67Ga (период полураспада 3,26 суток) и 72Ga (период полураспада 14,1 часов).

Химические свойства

Химические свойства галлия близки к свойствам алюминия, но реакции металлического галлия, как правило, идут гораздо медленнее из-за меньшей химической активности. Оксидная плёнка, образующаяся на поверхности металла на воздухе, предохраняет галлий от дальнейшего окисления.

Галлий медленно реагирует с горячей водой, вытесняя из неё водород и образуя гидроксид галлия(III):

На практике же данная реакция не происходит из-за быстрого окисления поверхности металла.

𝟤𝖦𝖺+𝟨𝖧𝟤𝖮𝟤𝖦𝖺(𝖮𝖧)𝟥+𝟥𝖧𝟤

При реакции с перегретым паром (350 °C) образуется соединение GaOOH (гидрат оксида галлия или метагаллиевая кислота):

𝟤𝖦𝖺+𝟦𝖧𝟤𝖮ot𝟤𝖦𝖺𝖮𝖮𝖧+𝟥𝖧𝟤

Галлий взаимодействует с минеральными кислотами с выделением водорода и образованием солей:

На практике реакция происходит только с концентрированными минеральными кислотами и значительно ускоряется при нагревании.
𝟤𝖦𝖺+𝟨𝖧𝖢𝗅𝟤𝖦𝖺𝖢𝗅𝟥+𝟥𝖧𝟤

Продуктами реакции с щелочами и карбонатами калия и натрия являются гидроксогаллаты, содержащие ионы Ga(OH)4 и Ga(OH)63− :

𝟤𝖦𝖺+𝟨𝖧𝟤𝖮+𝟤𝖭𝖺𝖮𝖧𝟤𝖭𝖺[𝖦𝖺(𝖮𝖧)𝟦]+𝟥𝖧𝟤

Галлий реагирует с галогенами: реакция с хлором и бромом идёт при комнатной температуре, с фтором — уже при −35 °C (около 20 °C — с воспламенением), взаимодействие с иодом начинается при нагревании.

При высоких температурах нагреванием в запаянной камере можно получить неустойчивые галогениды галлия(I) — GaCl, GaBr, GaI:

𝟤𝖦𝖺+𝖦𝖺𝖨𝟥98oC𝟥𝖦𝖺𝖨

Галлий не взаимодействует с водородом, углеродом, азотом, кремнием и бором.

При высоких температурах галлий способен разрушать различные материалы и его действие сильнее расплава любого другого металла. Так, графит и вольфрам устойчивы к действию расплава галлия до 800 °C, алунд и оксид бериллия BeO — до 1000 °C, тантал, молибден и ниобий устойчивы до 400—450 °C.

С большинством металлов галлий образует галлиды, исключением являются висмут, а также металлы подгрупп цинка, скандия, титана. Один из галлидов V3Ga имеет довольно высокую температуру перехода в сверхпроводящее состояние Шаблон:Nobr.

Галлий образует гидридогаллаты:

𝟦𝖫𝗂𝖧+𝖦𝖺𝖢𝗅𝟥𝖫𝗂[𝖦𝖺𝖧𝟦]+𝟥𝖫𝗂𝖢𝗅

Устойчивость ионов падает в ряду BH4 → AlH4 → GaH4. Ион BH4 устойчив в водном растворе, AlH4 и GaH4 быстро гидролизуются:

[𝖦𝖺𝖧𝟦]+𝟦𝖧𝟤𝖮𝖦𝖺(𝖮𝖧)𝟥+𝖮𝖧+𝟦𝖧𝟤

Галлийорганические соединения представлены алкильными (например, триметилгаллий) и арильными (например, трифенилгаллий) производными общей формулы GaR3, а также их галогеналкильными и галогенарильными аналогами GaHal3−Шаблон:MathRШаблон:Math. Галлийорганические соединения неустойчивы к воде и воздуху, однако реагируют не так бурно, как алюминийорганические соединения.

При растворении Ga(OH)3 и Ga2O3 в кислотах образуются аквакомплексы [Ga(H2O)6]3+, поэтому из водных растворов соли галлия выделяются в виде кристаллогидратов, например, хлорид галлия GaCl3·6H2O, галлийкалиевые квасцы KGa(SO4)2·12H2O. Аквакомплексы галлия в растворах бесцветны.

Вступает в реакцию с раствором дихромата калия и концентрированной серной кислотой (не ниже 50 %) в соотношении примерно 1:1. При достижении необходимой концентрации реагирующих веществ на поверхности галлия появляется явление поверхностного натяжения, от чего из-за постоянной смены количества полученных веществ капля жидкого металла приобретает способность к «пульсации». Данные расширения и сокращения напоминают работу сердца, от чего данный опыт получил название «Галлиевое Сердце». Данная реакция не имеет никакого практического значения для науки и является показательной для этого металла.

Недавно исследователи выяснили, что ковалентные связи, которые образует галлий, в которых атомы имеют общие электроны, исчезают при плавлении, но вновь возникают при более высоких температурах, что меняет представления о поведении галлия. Оказалось, что значительное увеличение энтропии при плавлении галлия освобождает атомы, что является ключевым моментом обоснования его низкой температуры плавления[11].

Получение

Для получения металлического галлия чаще используют редкий минерал галлит CuGaS2 (смешанный сульфид меди и галлия). Его следы постоянно встречаются со сфалеритом, халькопиритом и германитом[12]. Значительно бо́льшие его количества (до 1,5 %) были обнаружены в золе некоторых каменных углей. Однако основным источником получения галлия служат растворы глинозёмного производства при переработке боксита (обычно содержащие незначительные его примеси (до 0,1 %)) и нефелина. Галлий также можно получить с помощью переработки полиметаллических руд, угля. Извлекается он электролизом щелочных жидкостей, являющихся промежуточным продуктом переработки природных бокситов на технический глинозём. Концентрация галлия в щелочном алюминатном растворе после разложения в процессе Байера: Шаблон:Nobr, по способу спекания: Шаблон:Nobr. По этим способам галлий отделяют от большей части алюминия карбонизацией, концентрируя в последней фракции осадка. Затем обогащённый осадок обрабатывают известью, галлий переходит в раствор, откуда черновой металл выделяется электролизом. Загрязнённый галлий промывают водой, после этого фильтруют через пористые пластины и нагревают в вакууме для того, чтобы удалить летучие примеси. Для получения галлия высокой чистоты используют химический (реакции между солями), электрохимический (электролиз растворов) и физический (разложение) методы. В очень чистом виде (99,999 %) он был получен путём электролитического рафинирования, а также восстановлением водородом тщательно очищенного GaCl3.

Галлий является побочным продуктом в производстве алюминия. В 2024 году в Сибирском федеральном университете (СФУ) был предложен метод получения галлия из отходов производства алюминия[13].

Добыча: мировое потребление галлия на 2023 год составит около 100 т галлия, на сумму около 432 млн долл. По оценкам, КНР обеспечивает до 98 % мирового производства галлия.[14]

Основные соединения

𝖦𝖺𝟤𝖮𝟥+𝟨𝖧𝖢𝗅𝟤𝖦𝖺𝖢𝗅𝟥+𝟥𝖧𝟤𝖮
𝖦𝖺𝟤𝖮𝟥+𝟤𝖭𝖺𝖮𝖧+𝟥𝖧𝟤𝖮𝟤𝖭𝖺[𝖦𝖺(𝖮𝖧)𝟦]
𝖦𝖺𝟤𝖮𝟥+𝖭𝖺𝟤𝖢𝖮𝟥𝟤𝖭𝖺𝖦𝖺𝖮𝟤+𝖢𝖮𝟤
  • Ga(OH)3 — выпадает в виде желеобразного осадка при обработке растворов солей трёхвалентного галлия гидроксидами и карбонатами щелочных металлов (pH 9,7). Растворяется в концентрированном аммиаке и концентрированном растворе карбоната аммония, при кипячении осаждается. Нагреванием гидроксид галлия можно перевести в GaOOH, затем в Ga2O3·H2O, и, наконец, в Ga2O3. Можно получить гидролизом солей трёхвалентного галлия.
  • GaF3 — белый порошок с Шаблон:Math >950 °C, Шаблон:Math 1000 °C , плотностью 4,47 г/см³. Малорастворим в воде. Известен кристаллогидрат GaF3·3Н2O. Получают нагреванием оксида галлия в атмосфере фтора.
  • GaCl3 — бесцветные гигроскопичные кристаллы с Шаблон:Math 78 °C, Шаблон:Math 215 °C, плотностью 2,47 г/см³. Хорошо растворим в воде. В водных растворах гидролизуется. Применяется в качестве катализатора в органических синтезах. Безводный GaCl3, подобно AlCl3, дымит на влажном воздухеШаблон:Нет АИ.
  • GaBr3 — бесцветные гигроскопичные кристаллы с Шаблон:Math 122 °C, Шаблон:Math 279 °C, плотностью 3,69 г/см³. Растворяется в воде. В водных растворах гидролизуется. В аммиаке малорастворим. Получают непосредственно из элементов.
  • GaI3 — гигроскопичные светло-жёлтые иглы с Шаблон:Math 212 °C, Шаблон:Math 346 °C, плотностью 4,15 г/см³. Гидролизуется тёплой водой. Получают непосредственно из элементов.
  • Ga2S3 — жёлтые кристаллы или белый аморфный порошок с Шаблон:Math 1250 °C и плотностью 3,65 г/см³. Взаимодействует с водой, при этом полностью гидролизуется. Получают взаимодействием галлия с серой или сероводородом.
  • Ga2(SO4)3·18H2O — бесцветное, хорошо растворимое в воде вещество. Получается при взаимодействии галлия, его оксида и гидроксида с серной кислотой. С сульфатами щелочных металлов и аммония легко образует квасцы, например, KGa(SO4)2·12Н2О.
  • Ga(NO3)3·8H2O — бесцветные, растворимые в воде и этаноле кристаллы. При нагревании разлагается с образованием оксида галлия(III). Получается действием азотной кислоты на гидроксид галлия.

Применение

Галлий до́рог, в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США. В связи с высокой ценой и с большой потребностью в этом металле очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей в жидкое топливо. Около 97 % мирового производства галлия идёт на различные полупроводниковые соединения[9][15].

Применение металлического галлия

Галлий имеет ряд сплавов, жидких при комнатной температуре (так называемых галлам)[9], и один из его сплавов имеет температуру плавления −19 °C (галинстан, эвтектика In-Ga-Sn). Галламы применяются для замены токсичной ртути в качестве жидких затворов вакуумных аппаратов и диффузионных растворов, в качестве смазок при соединении кварцевых, стеклянных и керамических деталей. С другой стороны, галлий (сплавы в меньшей степени) весьма агрессивен к большинству конструкционных материалов (растрескивание и размывание сплавов при высокой температуре). Например, по отношению к алюминию и его сплавам галлий является мощным понизителем прочности, (см. адсорбционное понижение прочности, эффект Ребиндера). Это свойство галлия было продемонстрировано и детально изучено П. А. Ребиндером и Е. Д. Щукиным при контакте алюминия с галлием или его эвтектическими сплавами (жидкометаллическое охрупчивание). Кроме того, смачивание алюминия плёнкой жидкого галлия вызывает его стремительное окисление, подобно тому, как это происходит с алюминием, амальгамированным ртутью. Галлий растворяет при температуре плавления около 1 % алюминия, который достигает внешней поверхности плёнки, где мгновенно окисляется воздухом. Оксидная плёнка на жидкой поверхности неустойчива и не защищает от дальнейшего окисления.

Галлий и его эвтектический сплав с индием используется как теплоноситель в контурах реакторов[9].

Галлий может использоваться как смазочный материал и как покрытие зеркал специального назначения. На основе галлия и никеля, галлия и скандия созданы важные в практическом плане металлические клеи.

Металлическим галлием также заполняют кварцевые термометры (вместо ртути) для измерения высоких температур. Это связано с тем, что галлий имеет значительно более высокую температуру кипения по сравнению со ртутью[16].

Галлий-плутониевый сплав (с содержанием галлия порядка 3—3,5 ат.%) используется в плутониевых ядерных бомбах для стабилизации кристаллической структуры плутония в дельта-фазе в широком диапазоне температур. Кроме того, добавка галлия повышает коррозионную стойкость плутония и почти обнуляет его температурный коэффициент расширения; при этом, в отличие от алюминия, галлий имеет низкое сечение (α, n)-реакции. В частности, бомба «Толстяк», сброшенная на Нагасаки, содержала плутоний, стабилизированный галлием[17].

Из-за низкой температуры плавления слитки галлия рекомендуется транспортировать в пакетах из полиэтилена, который плохо смачивается жидким галлием.

Применение галлия в полупроводниковой промышленности

Галлий входит в состав полупроводниковых материалов в виде бинарных соединений типа III—V, а также гетероструктур на их основе Шаблон:Кратное изображение Арсенид галлия GaAs активно используется в сверхвысокочастотной электронике для создания высокочастотных транзисторов, в особенности транзисторов с высокой подвижностью (HEMT) и микроволновых монолитных интегральных схем (MMIC) на их основе[18][19][20], а также в некоторых светодиодов, в том числе лазерных[21]

Нитрид галлия GaN используется в создании полупроводниковых лазеров и светодиодов, ультрафиолетового и фиолетового излучения. На основе гетероструктуры, состоящей из нитрида галлия, в которой один слой легирован индием, InGaN, производятся высокоэффективные синие, фиолетовые и зелёные светодиоды.[22] Кроме того, производятся белые светодиоды путём покрытия синих светодиодов люминофором, являющиеся эффективным источником света. Такие светодиоды широко используются для освещения.

Помимо оптоэлектроники, нитрид галлия так же используется в силовой электронике для создания мощных быстродействующих транзисторов[23], а также сверхвысокочатотных мощных HEMT-транзисторов в составе MMIC[21][24]. Нитрид галлия обладает превосходными химическими и механическими свойствами, типичными для всех нитридных соединений.

Для светодиодов, полупроводниковых лазеров и других приложений оптоэлектроники и фотовольтаики используются и другие полупроводниковые соединения галлия типа AIIIBV: нитрид индия-галлия, арсенид индия-галлия, нитрид индия-галлия-алюминия, антимонид галлия, арсенид-фосфид галлия, арсенид-антимонид-фосфид индия-галлия, фосфид галлия, арсенид алюминия-галлия и многие другие.

Кроме соединений III—V, полупроводниковыми свойствами обладает оксид галлия(III), ведутся исследования по его применению в силовой и оптоэлектронике.[25]

Другие применения соединений галлия

Оксид галлия входит в состав ряда важных лазерных материалов группы гранатов — ГСГГ (гадолиний-скандий-галлиевый гранат), ИСГГ (иттрий-скандий-галлиевый гранат) и др.

Лангасит (LGS, силикат лантана-галлия) используется как пьезоматериал.

Изотоп галлий-71, составляющий в природной смеси изотопов около 39,9 %, является материалом для регистрации нейтрино. Использование его в качестве детектора нейтрино способно повысить чувствительность регистрации в 2,5 раза.

В медицине

В медицине галлий используется для торможения потери костной массы у онкологических больных и для быстрой остановки кровотечения из глубоких ран, не вызывая образование тромбов. Также галлий является мощным антибактериальным средством и ускоряет заживление ран[26].

Биологическая роль

Не играет биологической роли.

Контакт кожи с галлием приводит к тому, что сверхмалые дисперсные частицы металла остаются на ней. Внешне это выглядит как серое пятно. При попытке убрать его размазывается ещё сильнее. Лучший способ убрать пятна с рук или поверхности — воспользоваться жидким мылом.

Галлий малотоксичен по одним сведениям[9], высокотоксичен — по другим[27]. Клиническая картина отравления: кратковременное возбуждение, затем заторможенность, нарушение координации движений, адинамия, арефлексия, замедление дыхания, нарушение его ритма. На этом фоне наблюдается паралич нижних конечностей, далее — кома, смерть. Ингаляционное воздействие галлий-содержащего аэрозоля в концентрации 50 мг/м³ вызывает у человека поражение почек, равно как и внутривенное введение 10—25 мг/кг солей галлия. Отмечается протеинурия, азотемия, нарушение клиренса мочевины[28].

Примечания

Шаблон:Примечания

Литература

  • Шека И. А, Чаус И. С, Мнтюрева Т. Т. Галлий. К., 1963;
  • Ерёмин Н. И. Галлий. М., 1964;
  • Рустамов П. Г. Халькогениды галлия. Баку, 1967;
  • Дымов А. М., Савостин А. П. Аналитическая химия галлия. М., 1968;
  • Иванова Р. В. Химия и технология галлия. М., 1973;
  • Коган Б. И., Вершковская О. В., Славиковская И. М. Галлий. Геология, применение, экономика. М., 1973;
  • Яценко С. П. Галлий. Взаимодействие с металлами. М., 1974;
  • Процессы экстракции и сорбции в химической технологии галлия. Алма-Ата, 1985;
  • Химия и технология редких и рассеянных элементов. Под ред. К. А. Большакова, 2 изд., т. 1, М., 1976, с. 223—244;
  • Фёдоров П. И., Мохосоев М. В.. Алексеев Ф. П. Химия галлия, индия и таллия. Новосиб., 1977.
  • Шаблон:Книга

Ссылки

Шаблон:Навигация

Шаблон:Внешние ссылки Шаблон:Периодическая система элементов Шаблон:Ряд Активности Металлов Шаблон:Соединения галлия