Магнитная проницаемость
Магни́тная проница́емость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией и напряжённостью магнитного поля в веществе.
Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).
Обычно обозначается греческой буквой . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).
История
Впервые этот термин встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») опубликованной в 1881 году[1].
Определения
Соотношение между магнитной индукцией и напряжённостью магнитного поля через магнитную проницаемость вводится как:
- ,
и в общем случае здесь следует понимать как тензор, что в компонентной записи имеет вид[2]:
- .
Для изотропных веществ запись означает умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).
Через обозначена магнитная постоянная. В гауссовой системе эта постоянная безразмерна и равна 1, а в Международной системе единиц (СИ) Гн/м (Н/А2). Магнитная проницаемость в обеих системах единиц является безразмерной величиной. Иногда при пользовании СИ произведение именуют абсолютной, а коэффициент — относительной магнитной проницаемостью.
Смысл
Величина магнитной проницаемости отражает, насколько массово магнитные моменты отдельных атомов или молекул данной среды ориентируются параллельно приложенному внешнему магнитному полю некоей стандартной напряжённости и насколько велики эти моменты. Значениям близким к 1 соответствует слабая ориентированность моментов (почти хаос в направлениях, как без поля) и их малость, а далёким от 1, наоборот, высокая упорядоченность и большие величины или большое число индивидуальных магнитных моментов.
Есть аналогия с содержанием понятия «диэлектрическая проницаемость» как показателя меры реагирования электрических дипольных моментов молекул на электрическое поле.
Свойства
Магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением:
- ,
а в гауссовой системе аналогичное соотношение выглядит как
- .
Вообще говоря, магнитная проницаемость зависит как от свойств вещества, так и от величины и направления магнитного поля для анизотропных веществ (и, кроме того, от температуры, давления и т. д.).
Также она зависит от скорости изменения поля со временем, в частности, для синусоидального изменения поля — зависит от частоты этого колебания (в этом случае для описания намагничивания вводят комплексную магнитную проницаемость, чтобы описать влияние вещества на сдвиг фазы B относительно H). При достаточно низких частотах — небольшой быстроте изменения поля, её можно обычно считать в этом смысле независимой от частоты.


Магнитная проницаемость сильно зависит от величины поля для нелинейных по магнитной восприимчивости сред (типичный пример — ферромагнетики, для которых характерен магнитный гистерезис). Для таких сред магнитная проницаемость, как независящее от поля число, может указываться приближенно, в линейном приближении.
Для неферромагнитных сред линейное приближение const достаточно хорошо выполняется для широкого диапазона изменения величины поля.
Классификация веществ по значению магнитной проницаемости
Подавляющее большинство веществ относятся либо к классу диамагнетиков (), либо к классу парамагнетиков (). Но существует ряд веществ — ферромагнетики, например железо — которые обладают более выраженными магнитными свойствами.
Для ферромагнетиков, вследствие гистерезиса, понятие магнитной проницаемости, строго говоря, неприменимо. Однако, в определённом диапазоне изменения намагничивающего поля (в тех случаях, когда можно было пренебречь остаточной намагниченностью, но до насыщения) можно, в лучшем или худшем приближении, всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.
Сверхпроводники в ряде деталей ведут себя так, как если бы их магнитная проницаемость равнялась нулю: материал выталкивает магнитное поле при переходе в сверхпроводящее состояние. Иногда формально говорят, что сверхпроводники — идеальные диамагнетики, хотя ситуация более сложна.
Магнитная проницаемость воздуха примерно равна магнитной проницаемости вакуума и в технических расчетах принимается равной единице[3].
Таблицы значений
В двух таблицах ниже приведены значения магнитной проницаемости некоторых[4] веществ.
Примечание о пользовании первой таблицей:
- берем значение парамагнетика, например, воздуха – 0,38, умножаем его на и прибавляем единицу, получаем = 1,00000038,
- берем значение диамагнетика, например, воды – 9, умножаем его на и вычитаем из единицы, получаем = 0,999991.
| Парамагнетики, |
Диамагнетики, |
||
|---|---|---|---|
| Азот | 0,013 | Водород | 0,063 |
| Воздух | 0,38 | Бензол | 7,5 |
| Кислород | 1,9 | Вода | 9 |
| Эбонит | 14 | Медь | 10,3 |
| Алюминий | 23 | Стекло | 12,6 |
| Вольфрам | 176 | Каменная соль | 12,6 |
| Платина | 360 | Кварц | 15,1 |
| Жидкий кислород | 3400 | Висмут | 176 |
См. также
Примечания
Шаблон:Внешние ссылки Шаблон:Rq
- ↑ Werner von Siemens, Lebenserinnerungen
- ↑ Подразумевается суммирование по повторяющемуся индексу (j), то есть запись следует понимать так: . Эта запись, как легко видеть, означает умножение вектора слева на матрицу по правилам матричного умножения.
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ 7,0 7,1 7,2 7,3 7,4 7,5 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга
- ↑ 10,0 10,1 10,2 10,3 Шаблон:Cite web
- ↑ B. D. Cullity and C. D. Graham (2008), Introduction to Magnetic Materials, 2nd edition, 568 pp., p.16
- ↑ Шаблон:Cite web
- ↑ точно, по определению.