Безразмерная величина
Безразмерная величина (величина с размерностью единица, безразмерностная величина) — физическая величина, в размерность которой все сомножители, соответствующие основным физическим величинам данной системы физических величин, входят в степени, равной нулю[1][2].
Например, плоский угол, определяемый как отношение длины дуги окружности, заключённой между двумя радиусами, к длине радиуса, в силу приведённого выше определения является безразмерной (точнее, безразмерностной) величиной.
Безразмерными (следуя определению) являются относительные величины, например, относительная плотность (плотность тела по отношению к плотности воды), индекс вязкости, относительное удлинение, относительные магнитная и диэлектрическая проницаемости, а также критерии подобия (числа Рейнольдса, Прандтля и другие).
Количество каких-либо объектов также является безразмерной величиной. Например, количество электронов в атоме или количество атомов в образованной из них молекуле[3].
Величина, безразмерная в одной системе физических величин, может оказаться размерной в другой системе. Например, электрическая постоянная в электростатической системе СГСЭ является безразмерной величиной, а в Международной системе величин (Шаблон:Lang-en) имеет размерность L−3M−1T4I2. Величины, являющиеся отношением двух однородных величин, являются безразмерными в любой системе.
Единицами измерения безразмерных величин в общем случае являются числа[1]. Когерентной[4] производной единицей для безразмерной производной величины является число один (обозначение символом «1»), при этом наименование и обозначение единицы измерения один (1) обычно не указывают[1][3]. Единицам измерения некоторых безразмерных величин присваивают наименования. Например, единица измерения плоского угла: радиан. Относительные величины выражают также в процентах и промилле, логарифмические — в децибелах (дБ, dB) и неперах (Нп, Np).
Примечания
Литература
- РМГ 29-99 Метрология. Основные термины и определения
- Шаблон:Книга
См. также
Шаблон:Rq Шаблон:Критерии подобия
- ↑ 1,0 1,1 1,2 Шаблон:Книга
- ↑ Шаблон:Книга
- ↑ 3,0 3,1 Шаблон:Cite web
- ↑ Производная единица измерения называется когерентной, если она выражается в виде произведения степеней основных единиц измерения с коэффициентом пропорциональности, равным единице.