Теорема Бойяи — Гервина
Теорема Бойяи — Гервина утверждает, что любые два равновеликих многоугольника равносоставлены.

Формулировка
Пусть и — два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники и , так что для любого многоугольник конгруэнтен .
Схема доказательства
Главным фактом, используемым в доказательстве, является транзитивность равносоставленности, то есть утверждение о том, что если многоугольник равносоставлен и многоугольник равносоставлен , то равносоставлен . Это утверждение очевидно, если рассмотреть разбиение многоугольника одновременно по всей совокупности разделяющих линий, определяющих его разбиение при обоих переходах и .
Пользуясь этой леммой, теорему можно свести к более простой: Шаблон:Рамка Любой многоугольник равносоставлен прямоугольнику той же площади с единичной высотой. Шаблон:Конец рамки Последнее утверждение доказывается пошагово сведением задачи к разным частным случаям. Во-первых, рассматривается триангуляция многоугольника, что позволяет свести задачу к аналогичному утверждению только для треугольников (получившиеся прямоугольники можно будет просто соединить ввиду одинаковой высоты). Далее треугольник через отсечение верхней части, разбиении её на две части по линии высоты и приклеивание их по бокам к нижней части оказывается равносоставлен некоторому прямоугольнику.
Последним шагом в доказательстве теоремы является доказательство равносоставленности любых двух прямоугольников одинаковой площади. Это достигается через указание равносоставленности всех параллелограммов с одинаковой длиной основания, и через преобразование таким образом одного прямоугольника в параллелограмм с длиной боковой стороны, равной одной из сторон второго прямоугольника.
Замечания
- Понятие равносоставленности в этой теореме отличается от равносоставленности в парадоксе удвоения шара, где позволяется «разрезать» на произвольные непересекающиеся подмножества.
- Аналогичная теорема в трёхмерном Евклидовом пространстве уже не верна, этот вопрос является третьей проблемой Гильберта.
История
Теорема о равновеликих треугольниках, которая позже стала известна как теорема Бойяи — Гервина, была доказана в 1807 году Уоллесом.[1]. Теорема названа в честь Фаркаша Бояи и Пола Гервина. Называется 1833-й год [2], как вероятный год, когда Пол Гервин независимо от Бояи и Уильяма Уоллеса доказал выше указанную теорему.
Примечания
Литература
Ссылки
- ↑ Ian Stewart: From Here to Infinity. Oxford University Press 1996 (3. edition), ISBN 978-0-19-283202-3, p. 169 (Шаблон:Google books)
- ↑ 1833 in science // https://en.wikipedia.org/wiki/1833_in_science Шаблон:Wayback