Уравнение Власова

Материал из testwiki
Версия от 10:11, 4 ноября 2024; imported>Artem Korzhimanov (Преамбула: орфография)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Уравнение Власова — кинетическое уравнение для функции распределения частиц плазмы, описывающее их динамику в электромагнитных полях посредством самосогласованного поля. Впервые предложено А. А. Власовым в статье[1] и позднее излагается в монографии[2].

Проблемы газокинетического подхода

В своей работе Власов сначала указывает на неприменимость газокинетического подхода, основанного на уравнении Больцмана (предполагается, что интеграл столкновений зависит только от парных столкновений), к описанию динамики плазмы с кулоновским взаимодействием. Он отмечает следующие проблемы, возникающие при попытке применения теории, основанной на парных столкновениях, к описанию плазмы:

  1. приближение парных столкновений не согласуется с исследованиями Рэлея и Ленгмюра и Тонкса, которые предсказали и исследовали ленгмюровские волны в электронной газовой плазме.[3][4]
  2. приближение парных столкновений формально не применимо к кулоновскому взаимодействию из-за расходимости полного сечения рассеивания.
  3. приближение парных столкновений не позволяет объяснить эксперименты Меррилла и Вебба об аномальном рассеянии электронов в газовой плазме.[5]

В качестве причины возникновения этих проблем Власов указывает на дальнодействующий характер кулоновских сил, что приводит к взаимодействию каждой из частиц с совокупностью других частиц. Дальнодействие в этом случае означает, что радиус влияния этой силы больше чем среднее расстояние между частицами.

Уравнения Власова — Максвелла

Власов изначально рассматривал систему общих уравнений плазмы, включающих три компоненты (электроны, ионы и нейтральные атомы), и записывал уравнение Больцмана для s-ой компоненты плазмы в виде

fst+div𝐫vfs+esms(E+1c[v,B])grad𝐯fs=[fst]s1st+[fst]s2st+[fst]s3st.

где fs(r,p,t) — функция распределения. Эта система уравнений включала также уравнения Максвелла, и уравнения для заряда и тока, выраженные через функции распределения fs. Так как Власов интересовался только волновыми решениями, то он пренебрёг вкладами интегралов столкновений, поскольку по оценкам выходило, что частоты плазменных волн много больше частот парных столкновений частиц в плазме. То есть вместо описания взаимодействия заряженных частиц в плазме посредством столкновений, предложил использовать самосогласованное поле, созданное заряженными частицами плазмы для описания длиннодействующего потенциала. Вместо уравнения Больцмана Власов предлагает использовать следующую систему уравнений для описания заряженных компонент плазмы (электронов с функцией распределений fe(r,p,t) и положительных ионов с функцией распределения fi(r,p,t)):

fet+vfexe(E+1c[v,B])fep=0
fit+vfix+e(E+1c[v,B])fip=0
rotB=4πjc+1cEt,rotE=1cBt
divE=4πρ,divB=0
ρ=e(fife)d3p,j=e(fife)vd3p

Здесь e — заряд электрона, c — скорость света, E(r,t) и B(r,t) — самосогласованные электрическое и магнитное поля, созданные в точке r в момент времени t всеми заряженными частицами плазмы. Существенное отличие этой системы уравнений от уравнений движения заряженных частиц во внешнем электромагнитном поле в том, что само самосогласованное электромагнитное поле сложным образом зависит от функций распределения ионов и электронов.

Уравнения Власова — Пуассона

Уравнения Власова — Максвелла являются системой нелинейных интегро-дифференциальных уравнений. Если флуктуации функций распределения относительно равновесного состояния невелики, эта система уравнений может быть линеаризована. Линеаризация даст систему уравнений Власова — Пуассона, описывающую динамику плазмы в самосогласованном электростатическом поле. Уравнения Власова — Пуассона являются системой уравнений Власова для каждой компоненты плазмы (рассматриваем нерелятивистский предел):

fαt+vfαx+qαEmαfαv=0,

и уравнения Пуассона для самосогласованного электрического поля:

E=Δϕ=4πρ.

Здесь qα — электрический заряд и mα — масса частиц плазмы, E(x,t) — самосогласованное электрическое поле, ϕ(x,t) — потенциал самосогласованного электрического поля и ρ — плотность электрического заряда.

Примечания

Шаблон:Примечания

Литература

  1. Шаблон:Статья
  2. Шаблон:Статья
  3. Rayleigh , Phil. Mag. 11, 117 (1906).
  4. I. Langmuir and L. Τοnks, Phys. Rev 33, 195 (1929).
  5. Шаблон:Статья