Доверительный интервал

Материал из testwiki
Перейти к навигации Перейти к поиску

Довери́тельный интерва́л — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.

Доверительным называется интервал, в который попадают измеренные в эксперименте значения, соответствующие доверительной вероятности[1].

Метод доверительных интервалов разработал американский статистик Ежи Нейман, исходя из идей английского статистика Рональда Фишера[ссылка 1].

Определение

Доверительным интервалом параметра θ распределения случайной величины X с уровнем доверия p[примечание 1], порождённым выборкой (x1,,xn), называется интервал с границами l(x1,,xn) и u(x1,,xn), которые являются реализациями случайных величин L(X1,,Xn) и U(X1,,Xn), таких, что

(LθU)=p.

Граничные точки доверительного интервала l и u называются доверительными пределамиШаблон:Sfn.

Вероятность, с которой в условиях данного эксперимента полученные экспериментальные данные можно считать надежными (достоверными), называют доверительной вероятностью или надежностью. Величина доверительной вероятности определяется характером производимых измерений. При выполнении учебных лабораторных работ в курсе общей физики доверительная вероятность обычно считается равной 95 %.

Толкование доверительного интервала, основанное на интуиции, будет следующим: если уровень доверия p велик (скажем, 0,95 или 0,99), то доверительный интервал почти наверняка содержит истинное значение θ[ссылка 2].

Еще одно истолкование понятия доверительного интервала: его можно рассматривать как интервал значений параметра θ, совместимых с опытными данными и не противоречащих им.

Более точное, хоть также не совсем строгое, толкование доверительного интервала с уровнем доверия, скажем, 95 %, состоит в следующем. Если провести очень большое количество независимых экспериментов с аналогичным построением доверительного интервала, то в 95 % экспериментов доверительный интервал будет содержать оцениваемый параметр θ (то есть будет выполняться LθU), а в оставшихся 5 % экспериментов доверительный интервал не будет содержать θ.

Примеры

Байесовский доверительный интервал

В байесовской статистике существует схожее, но отличающееся в некоторых ключевых деталях определение Шаблон:Нп3. Здесь оцениваемый параметр θ сам считается случайной величиной с некоторым заданным априорным распределением (в простейшем случае — равномерным), а выборка X фиксирована (в классической статистике всё в точности наоборот). Байесовский p-доверительный интервал — это интервал [L,U], покрывающий значение параметра θ с апостериорной вероятностью p:

(LθU|X)=p.

Как правило, классический и байесовский доверительные интервалы различаются. В англоязычной литературе байесовский доверительный интервал принято называть термином credible interval, а классический — confidence interval.

См. также

Примечания

Шаблон:Примечания

  1. величину, дополняющую доверительную вероятность до единицы, обычно обозначают α
Источники
  1. Гмурман В. Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов. — 9-е изд. — М.: Высшая школа, 2003. — 479 с. — ISBN 5-06-004214-6
  2. Справочник по прикладной статистике. В 2-х т. Т. 1: Пер. с англ. / Под ред. Э. Ллойда, У. Ледермана, Ю. Н. Тюрина. — М.: Финансы и статистика, 1989. — 510 с. — ISBN 5-279-00245-3 (Определение 4.2.1.; стр. 149.)

Литература

Шаблон:Вс