Задачи тысячелетия
Шаблон:Проблемы тысячелетия Зада́чи тысячеле́тия — семь математических проблем, определённых Математическим институтом Клэя в 2000 году как «важные классические задачи, решение которых не найдено вот уже в течение многих лет», за решение каждой из которых обещано вознаграждение в 1 млн долларов США. Существует историческая параллель между задачами тысячелетия и списком проблем Гильберта 1900 года, оказавшим существенное влияние на развитие математики в XX веке; из 23 проблем Гильберта большинство уже решено, и только одна — гипотеза Римана — вошла в список задач тысячелетия.
По состоянию на 2025 год только одна из семи задач тысячелетия (гипотеза Пуанкаре) решенаШаблон:Переход.
Решённые задачи
Гипотеза Пуанкаре
Шаблон:Main Считается наиболее известной проблемой топологии. Неформально говоря, она утверждает, что всякий трёхмерный «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации.
Премия за доказательство гипотезы Пуанкаре присуждена в 2010 году российскому математику Григорию Перельману[1], опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы, но учёный отказался принять эту премию, как раньше отказался от Филдсовской премии[2].
Нерешённые задачи
Равенство классов P и NP
Шаблон:Main Если положительный ответ на какой-то вопрос можно быстро (за полиномиальное время) проверить (используя некоторую вспомогательную информацию, называемую сертификатом), то верно ли, что и сам ответ (вместе с сертификатом) на этот вопрос можно быстро найти? Задачи второго типа относятся к классу P, первого — к классу NP. Проблема равенства этих классов является одной из важнейших проблем теории алгоритмов.
Гипотеза Ходжа
Шаблон:Main Важная проблема алгебраической геометрии. Гипотеза описывает классы когомологий на комплексных проективных многообразиях, реализуемые алгебраическими подмногообразиями.
Гипотеза Римана
Шаблон:Main Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Её доказательство или опровержение будет иметь далеко идущие последствия для теории чисел, особенно в области распределения простых чисел. Гипотеза Римана была восьмой в списке проблем Гильберта. В случае публикации контрпримера к гипотезе Римана учёный совет института Клэя вправе решить, можно ли считать данный контрпример окончательным решением проблемы или же проблема может быть переформулирована в более узкой форме и оставлена открытой (в последнем случае автору контрпримера может быть выплачен небольшой приз)[3][4].
Теория Янга — Миллса
Шаблон:Main Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы квантовая теория Янга — Миллса для пространства (четырёхмерного пространства-времени) существует и имеет ненулевую спектральную щель. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.
Существование и гладкость решений уравнений Навье — Стокса
Шаблон:Main Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики.
Гипотеза Бёрча — Свиннертон-Дайера
Шаблон:Main Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.