Замечательные пределы
Шаблон:Переработать Замеча́тельные преде́лы — термины, использующиеся в советских и российских учебниках по математическому анализу для обозначения двух широко известных математических тождеств со взятием предела:
- Первый замечательный предел:
- Второй замечательный предел:
Первый замечательный предел
Доказательство:

Рассмотрим односторонние пределы и и докажем, что они равны 1.
Рассмотрим случай . Отложим этот угол на единичной окружности так, чтобы его вершина совпадала с началом координат, а одна сторона совпадала с осью . Пусть — точка пересечения второй стороны угла с единичной окружностью, а точка — с касательной к этой окружности в точке . Точка — проекция точки на ось .
Очевидно, что:
- (1)
(где — площадь сектора )
Поскольку :
Подставляя в (1), получим:
Так как при :
Умножаем на :
Перейдём к пределу:
Найдём левый односторонний предел (так как функция четна, в этом нет необходимости, достаточно доказать это для правого предела):
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия:
Второй замечательный предел
Доказательство существования второго замечательного предела: Шаблон:Hider
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
- Отсюда следует: , поэтому
- .
- Если , то . Поэтому, согласно пределу , имеем:
- .
- По признаку (о пределе промежуточной функции) существования пределов .
2. Пусть . Сделаем подстановку , тогда
- .
Очевидно, из двух этих случаев вытекает, что для вещественного x.
Следствия
- для ,
Применение
Замечательные пределы и их следствия используются при раскрытии неопределённостей для нахождения других пределов.