Конец топологического пространства
Конец топологического пространства — грубо говоря, компонента связности его «идеальной границы». То есть, каждый конец представляет собой способ двигаться к бесконечности в пространстве.
Добавление точки на каждом конце даёт компактификацию исходного пространства, известную как конечная компактификация.
Определение
Пусть X — топологическое пространство, и пусть
есть возрастающая последовательность компактных подмножеств в X, чьи внутренности покрывают X. Тогда X имеет один конец для каждой последовательности
- ,
где каждое Un — это компонента связности дополнения X\Kn.
Несложно доказать, что число концов не зависит от конкретной последовательности {Kn} компактных множеств.
Примеры
- Компактное пространство не имеет концов.
- Вещественная прямая имеет два конца, ∞ и −∞.
- Евклидово пространство при n > 1 имеет только один конец. Это происходит потому, что у есть только одна неограниченная компонента для любого компакта K.
- Более того, если М — компактное многообразие с краем, то число концов его внутренности равно числу компонент связности границы М.
- Объединение n лучей, исходящих из начала координат в , имеет n концов.
- Бесконечное полное бинарное дерево имеет несчётное число концов. Эти концы можно рассматривать в качестве «кроны» бесконечного дерева. В конечной компактификации множество концов гомеоморфно Канторову множеству.
История
Понятие конца топологического пространства было введено Гансом Фройденталем в 1931 году.
Вариации и обобщения
Определение конца данное выше относится только к пространствам X, которые допускают исчерпывание компактами. Однако оно может быть обобщено следующим образом: пусть X — любое топологическое пространство, рассмотрим прямую систему {K} компактных подмножеств в X с отображениями включения. Рассмотрим соответствующую обратную систему связных компонент дополнений {π0(X\K)}. Тогда множество концов в Х определяется как обратный предел этой обратной системы.
Ссылки
- Шаблон:Citation.
- Шаблон:Citation
- Ross Geoghegan, Topological methods in group theory, GTM-243 (2008), Springer ISBN 978-0-387-74611-1.
- Peter Scott, Terry Wall, Topological methods in group theory, London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press (1979) 137—203.