Наращённый усечённый куб

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Многогранник

Наращённый усечённый куб[1] — один из многогранников Джонсона (J66, по Залгаллеру — М115).

Составлен из 22 граней: 12 правильных треугольников, 5 квадратов и 5 правильных восьмиугольников. Среди восьмиугольных граней 1 окружена четырьмя восьмиугольными и четырьмя треугольными, остальные 4 — тремя восьмиугольными и пятью треугольными; среди квадратных граней 1 окружена четырьмя квадратными, остальные 4 — квадратной и тремя треугольными; среди треугольных 4 грани окружены тремя восьмиугольными, 4 грани — двумя восьмиугольными и квадратной, остальные 4 — восьмиугольной и двумя квадратными.

Имеет 48 рёбер одинаковой длины. 8 рёбер располагаются между двумя восьмиугольными гранями, 24 ребра — между восьмиугольной и треугольной, 4 ребра — между двумя квадратными, остальные 12 — между квадратной и треугольной.

У наращённого усечённого куба 28 вершин. В 16 вершинах сходятся две восьмиугольных грани и одна треугольная; в 8 вершинах сходятся восьмиугольная, квадратная и две треугольных грани; в 4 вершинах сходятся три квадратных и треугольная грани.

Наращённый усечённый куб можно получить из двух многогранников — усечённого куба и четырёхскатного купола (J4), — приложив их друг к другу восьмиугольными гранями.

Метрические характеристики

Если наращённый усечённый куб имеет ребро длины a, его площадь поверхности и объём выражаются как

S=(15+102+33)a234,3382880a2,
V=(8+1623)a315,5424723a3.

В координатах

Наращённый усечённый куб можно расположить в декартовой системе координат так, чтобы его вершины имели координаты

  • (±(21);±1;±1),
  • (±1;±(21);±1),
  • (±1;±1;±(21)),
  • (±(22);0;32).
  • (0;±(22);32).

При этом ось симметрии многогранника будет совпадать с осью Oz, а две из четырёх плоскостей симметрии — с плоскостями xOz и yOz.

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Многогранники

  1. Залгаллер В. А. Выпуклые многогранники с правильными гранями / Зап. научн. сем. ЛОМИ, 1967. — Т. 2. — Cтр. 23.