Неравенство Колмогорова
Неравенство Колмогорова — обобщение теоретико-вероятностного варианта неравенства Чебышёва, ограничивающее вероятность того, что частичная сумма конечной совокупности независимых случайных величин не превышает некоторого фиксированного числа. Установлено Андреем Колмогоровым в середине 1920-х годов и применено им для доказательства усиленного закона больших чисел.
ФормулировкаШаблон:Sfn: для определённых на общем вероятностном пространстве независимых случайных величин с математическими ожиданиями и дисперсиями и произвольной величины выполнено: Шаблон:EF гдe .
Если к тому же , то
Доказательство
Обозначим
Тогда и
- (Где — индикатор)
Но
поскольку в силу предположенной независимости и условий Поэтому
что и доказывает Шаблон:Eqref.
Для доказательства Шаблон:Eqref заметим, что Шаблон:EF С другой стороны, на множестве
и, значит,
Шаблон:EF Из Шаблон:Eqref и Шаблон:Eqref находим, что:
Примечания
Литература
- Шаблон:Книга (Theorem 22.4)
- Шаблон:Книга
- Шаблон:Книга
- Шаблон:Книга (Глава 4 § 2 раздел 1)