Нитрид кремния

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Карточка{{#invoke:check for unknown parameters|check |unknown= |ignoreblank= |preview=Неизвестный параметр «_VALUE_» шаблона Вещество |showblankpositional= |CAS|ChEBI|ChemSpiderID|ECB|EINECS|H-фразы|InChI|InChIKey|NFPA 704|P-фразы|PubChem|R-фразы|RTECS|S-фразы|SMILES|nocat|Кодекс Алиментариус|ЛД50|ООН|ПДК|СГС|большие схемы|вещество1|вещество2|вещество3|вещество4|внешний вид|вращение|гибридизация|давление пара|диапазон прозрачности|динамическая вязкость|дипольный момент|заголовок|изображение|изображение слева|изображение справа|изображение2|изоэлектрическая точка|интервал трансформации|картинка|картинка малая|картинка2|картинка3D|картинка 3D|картинка3D2|кинематическая вязкость|конст. диссоц. кислоты|константа В. дер В.|координационная геометрия|коэфф. электр. сопротив.|кристаллическая структура|критическая плотность|критическая темп.|критическая точка|критическое давление|молярная концентрация|молярная масса|наименование|описание изображений слева и справа|описание изображения|описание изображения слева|описание изображения справа|описание изображения2|описание картинки|описание картинки2|описание картинки3D|описание картинки3D2|описание малой картинки|от. диэлектр. прониц.|плотность|поверхностное натяжение|показатель преломления|предел прочности|пределы взрываемости|примеси|проводимость|растворимость|растворимость1|растворимость2|растворимость3|растворимость4|рац. формула|сигнальное слово|скорость звука|сокращения|состояние|твёрдость|темп. воспламенения|темп. вспышки|темп. кипения|темп. кипения пр.|темп. плавления|темп. разложения|темп. самовоспламенения|темп. стеклования|темп. сублимации|температура размягчения|тепловое расширение|теплопроводность|теплоёмкость|теплоёмкость2|токсичность|традиционные названия|тройная точка|угол Брюстера|уд. электр. сопротивление|удельная теплота парообразования|удельная теплота плавления|фазовые переходы|хим. имя|хим. формула|ширина изображения|ширина изображения2|энергия ионизации|энтальпия кипения|энтальпия образования|энтальпия плавления|энтальпия растворения|энтальпия сгорания|энтальпия сублимации|ЕС|удельная теплота парообразования2|удельная теплота плавления2|Номер UN|эмпирическая формула|теплота парообразования|энтальпия раствородия|тепловое расширодие}} Нитрид кремния (четырёхазотистый трехкремний) — бинарное неорганическое химическое соединение, представляющее собой соединение кремния и азота. Химическая формула — 𝖲𝗂𝟥𝖭𝟦.

Свойства

Нитрид кремния обладает полезными для многих применений механическими и физико-химическими свойствами. Благодаря нитридкремниевой связи значительно улучшаются эксплуатационные свойства огнеупоров на основе карбида кремния, периклаза, форстерита и т. п. Огнеупоры на нитридной связке обладают высокой термо- и износостойкостью, имеют превосходную стойкость к растрескиванию, а также воздействию кислот, щелочей, агрессивных расплавов и паров металлов.

Физические

Керамика из нитрида кремния имеет высокую прочность в широком диапазоне температур, умеренную теплопроводность, низкий коэффициент теплового расширения, умеренно-высокий коэффициент упругости и необычайно высокую, для керамики, вязкость разрушения. Такое сочетание свойств приводит к отличной тепловой ударостойкости, способности выдерживать высокие нагрузки при высоких температурах, сохраняя превосходную износостойкость. Благодаря своему низкому удельному весу, кристаллический нитрид кремния хорошо подходит для протезирования человеческих костей[1].

По сравнению с диоксидом кремния, нитрид в аморфном состоянии имеет более высокую концентрацию электронных и дырочных ловушек (около 1019 см−3), причём эти ловушки являются относительно глубокими (около 1,5 эВ). Это позволяет использовать нитрид кремния в качестве эффективного запоминающего устройства: инжектированные в него электроны и дырки локализуются (захватываются) ловушками и могут находиться в них в течение порядка 10 лет при температуре 85 °C[1].

Также по сравнению с оксидом нитрид кремния обладает высокой диэлектрической проницаемостью (около 7, в то время как у SiO2 — 3,9), поэтому он используется в ряде устройств в качестве изолятора[1].

Химические

Кремния нитрид не взаимодействует с азотной, серной и соляной кислотами, слабо реагирует с ортофосфорной кислотой и интенсивно с фтористоводородной кислотой.Шаблон:Нет АИ Разлагается расплавами щелочей, оксидов и карбонатов щелочных металлов. Не взаимодействует с хлором до 900 °C, с сероводородом — до 1000 °C, с водородом — до 1200 °C. С расплавами Al, Pb, Sn, Zn, Bi, Cd, Cu — не реагирует; с переходными металлами образует силициды, с оксидами металлов выше 1200 °C — силикаты. Окисление нитрида кремния на воздухе начинается выше 900 °C.

Обработка

Изделия из нитрида кремния получают спеканием при высоких температурах, горячим прессованием, пиролизом соединений кремния. Высококачественные изделия получаются с помощью спекания в газостатических установках под высоким давлением в присутствии азота.

Нитрид кремния трудно получить в качестве единого материала из-за того что он не может быть нагрет более 1850 °C — это значительно ниже температуры плавления (кремний и азот диссоциируют). Таким образом применение обычного термического метода спекания (Шаблон:Lang-en) является проблематичным. Склеивание порошкообразного нитрида кремния может быть достигнуто при более низких температурах путём добавления дополнительных материалов, которые обычно улучшают уровень спекания. Альтернативой является метод использования искрового плазменного спекания (Spark Plasma Sintering)[2] , где нагрев осуществляется очень быстро (в секундах); где импульсы электрического тока проходят через спрессованный заранее порошок. Плотные изделия из нитрида кремния были получены этим методом при температурах 1500—1700 °C.

Свойства кристаллических модификаций

Существуют три кристаллографические структуры нитрида кремния, названные α, β и γ. Α и β фазы являются наиболее распространёнными формами нитрида кремния, могут быть произведены при обычном давлении. Γ фаза может быть синтезирована при высоких давлениях и температурах и при давлении 35 ГПа.

Α и β-Si3N4 имеют тригональную сингонию (Символ Пирсона hP28, пространственная группа P31c, № 159) и гексагональную (hP14, P63, № 173) структуры соответственно, которые построены по углам обмена тетраэдров Si3N4. Их можно рассматривать как структуры, состоящие из слоёв кремния и атомов азота в последовательности ABAB … или АВСВАВСВ … в β-Si3N4 и α-Si3N4 соответственно. Слой AB повторяется и в α, и в β фазах, а CD с АВ на плоскости скольжения только в α фазе. Тетраэдры в Si3N4 в β форме соединены между собой таким образом, что тоннели формируются параллельно оси элементарной ячейки. В связи с плоскостью скольжения, которая находится с AB до CD, α структура содержит пустоты вместо тоннелей. Кубическая γ-Si3N4 форма часто называется «с-модификацией» в литературе, по аналогии с кубической модификацией нитрида бора (с-BN). Γ-форма нитрида кремния имеет структуру шпинели, в которой каждые два атома кремния соединяются с шестью атомами азота, образуя октаэдр, и один атом кремния соединяет четыре атома азота, образуя тетраэдр.

Более длинная последовательность укладки приводит к получению α-фазы с более высокой твёрдостью, по сравнению с β-фазой. Тем не менее, α-фаза химически неустойчива по сравнению с β-фазой. При высоких температурах, будучи нагретой до жидкой фазы, α-фаза переходит в β-фазу. Таким образом, β-Si3N4 является основной формой, используемой в керамическом деле.


Свойства α и β-Si3N4 форм:

  • Для α-Si3N4: а=0,7765 нм, с=0,5622 нм, пространственная группа P31c;
  • Для β-Si3N4: а=0,7606 нм, с=0,2909 нм, пространственная группа P63/m.
  • α-Si3N4 превращается в β-форму при температуре выше 1400 °C.

β-Si3N4 стабилен до 1600 °C; не плавится.

Свойства α-Si3N4:

Использование

Кантилевер из Si3N4 используется в атомных силовых микроскопах

При создании деталей

Изделия (в том числе и подшипники) из нитрида кремния
График, показывающий преимущества над другими керамическими изделиями

Нитрид кремния в основном используется в структурах, где нужна высокая прочность и устойчивость к высоким температурам.

Применяют для изготовления тиглей, элементов насосов, трубопроводов, сопел газовых горелок, блочных носителей катализаторов, обтекателей головных частей летательных аппаратов, радиопрозрачных окон, как абразивный и изоляционный материал. Используется, например, при создании деталей теплового тракта газотурбинных двигателей и самих газовых турбин, деталей двигателя автомобиля, подшипников, металлообработки, широко применяют в производстве керамики, режущего инструмента, производстве огнеупоров и т. д. Огнеупоры с нитридом кремния обладают высокой термостойкостью и прочностью. Применяют как составную часть теплозащитных абляционных материалов, огнеупорных карбидокремниевых материалов, для термостойких огнеупорных материалов, для металлопроводников, устройств разливки и дозировки цветных металлов.

Применение в электронике

Нитрид кремния наряду с оксидом и оксинитридом кремния является ключевым материалом в кремниевых электронных приборах[1].

Тонкие плёнки нитрида кремния чаще всего являются изолирующим слоем в кремниевой электронике; кантилевер из нитрида кремния является зондирующей частью атомного силового микроскопа.

Также нитрид кремния часто используют как изолятор и химический барьер при производстве интегральных микросхем.

Нитрид кремния широко используется в приборах флеш-памяти в качестве запоминающей среды[1].

Применение в строительстве

Может использоваться в качестве фибры в фибробетоне (аналогично базальтовому волокну)[3].

Получение

Прямое азотирование[4]:

𝟥𝖲𝗂+𝟤𝖭𝟤 12001500oC 𝖲𝗂𝟥𝖭𝟦

Термоуглеродное азотирование:

𝟥𝖲𝗂𝖮𝟤+𝟨𝖢+𝟤𝖭𝟤𝖲𝗂𝟥𝖭𝟦+𝟨𝖢𝖮

Пропускание силана в аммиаке даёт в результате нитрид кремния и водород:

𝟥𝖲𝗂𝖧𝟦+𝟦𝖭𝖧𝟥𝖲𝗂𝟥𝖭𝟦+𝟣𝟤𝖧𝟤

Пропускание дихлорида-дигидрида кремния в аммиаке даёт нитрид кремния, хлороводород и водород:

𝟥𝖲𝗂𝖢𝗅𝟤𝖧𝟤+𝟦𝖭𝖧𝟥𝖲𝗂𝟥𝖭𝟦+𝟨𝖧𝖢𝗅+𝟨𝖧𝟤

Химическое осаждение из парогазовой фазы (Шаблон:Lang-en, CVD)[5]:

𝟥𝖲𝗂𝖧𝟦+𝟦𝖭𝖧𝟥𝖲𝗂𝟥𝖭𝟦+𝟣𝟤𝖧𝟤

Добавив к сульфиду кремния аммиак получим на выходе нитрид кремния, чистый водород и серу:

𝟥𝖲𝗂𝖲𝟤+𝟦𝖭𝖧𝟥 12001450oC 𝖲𝗂𝟥𝖭𝟦+𝟨𝖧𝟤+𝟨𝖲

Добавив к хлориду кремния(IV) аммиак, пропуская в токе аргона, получим на выходе нитрид кремния и хлорид аммония:

𝟥𝖲𝗂𝖢𝗅𝟦+𝟣𝟨𝖭𝖧𝟥 t>400oC 𝖲𝗂𝟥𝖭𝟦+𝟣𝟤𝖭𝖧𝟦𝖢𝗅

Также можно получить, проделав всего две реакции:

  1. 𝖲𝗂𝖢𝗅𝟦+𝟪𝖭𝖧𝟥 50oC 𝖲𝗂(𝖭𝖧𝟤)𝟦+𝟦𝖭𝖧𝟦𝖢𝗅 – реакция протекает в жидком аммиаке
  2. 𝟥𝖲𝗂(𝖭𝖧𝟤)𝟦 t 𝖲𝗂𝟥𝖭𝟦+𝟪𝖭𝖧𝟥 – термическое разложение тетраамида кремния

История вещества

Нитрид кремния был впервые получен в 1857 году Анри Сент-Клер Девилем и Фридрихом Вёлером, но его активное промышленное производство началось только с 1950-х. В природе Si3N4 был найден в 1990-х годах как крошечное включение в метеоритах, и был назван после ниритом в честь американского физика Альфреда Нира.

Примечания

Шаблон:Примечания

  1. 1,0 1,1 1,2 1,3 1,4 Ошибка цитирования Неверный тег <ref>; для сносок ufn не указан текст
  2. Шаблон:Cite web
  3. 212. К.А. Сарайкина, В.А. Шаманов Дисперсное армирование бетонов // Вестник ПГТУ. Урбанистика. 2011. № 2.
  4. Изначально использованный в статье термин "нитрование" применяется в органической химии для обозначения введения NO2-группы в вещество. Получение соединений металла или неметалла с азотом (как правило, на поверхности, но иногда и в объёме) называется азотированием, реже - нитрированием (заимствование от немецкого Nitrierung).
  5. Словарь-справочник по новой керамике / Шведков Е. Л., Ковенский И. И., Денисенко Э. Т., Зырин А. В.; Ответственный редактор Трефилов В. И.— Киев: Наукова думка, 1991.—280 с.