Осциллятор Ван дер Поля

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Универсальная карточка

Осциллятор Ван дер Поля — осциллятор с нелинейным затуханием. Математически моделируется уравнением

d2xdt2μ(1x2)dxdt+x=0, где
x — координата точки, зависящая от времени t;
μ — коэффициент, характеризующий нелинейность и силу затухания колебаний.

История

Осциллятор Ван дер Поля был предложен голландским инженером и физиком Бальтазаром ван дер Полем, во время его работы в компании Philips.[1] Ван дер Полем были найдены устойчивые колебания, которые были названы релаксационными,[2] известные как «предельные циклы». В сентябре 1927 года Ван дер Поль и его коллега ван дер Марк сообщили,[3] что на определённых частотах были зафиксированы шумы, всегда находящиеся рядом с собственными частотами волн. Это было одним из первых наблюдений детерминированного хаоса.[4]

Уравнение Ван дер Поля применяется и в физике, и в биологии. Так, например, в биологии создана модель ФитцХью — Нагумо. Данное уравнение также было использовано в сейсмологии для моделирования геологических разломов.[5]

Двумерный случай

С помощью теоремы Льенара можно доказать, что система имеет предельный цикл. Из данной теоремы следует, что y=xx331μdxdt. Отсюда можно вывести[6] уравнения осциллятора Ван дер Поля для двумерного случая:

{dxdt=μ(x13x3y)dydt=1μx.

Можно также совершить другую замену y=dxdt и получить

{dxdt=ydydt=μ(1x2)yx.

Осциллятор со свободными колебаниями

У осциллятора Ван дер Поля существуют два интересных режима: при μ=0 и при μ>0. Очевидно, что третьего режима — μ<0 — не существует, так как затухание в системе не может быть отрицательным.

1) Когда μ=0, то есть осциллятор рассчитывается без затухания, то указанные выше уравнения преобразуются к виду
d2xdt2+x=0.
Это уравнение гармонического осциллятора.
2) При μ>0 система имеет некие предельные циклы. Чем дальше μ от нуля, тем колебания осциллятора менее похожи на гармонические.

Вынужденные колебания

Вынужденные колебания осциллятора Ван дер Поля как с потерями энергии, так и без оных рассчитываются по формуле

d2xdt2μ(1x2)dxdt+x=Asin(ωt), где
A — амплитуда внешнего гармонического сигнала,
ω — его угловая частота.

Галерея

Примечания

Шаблон:Примечания

См. также

Ссылки

  1. Cartwright, M.L., «Balthazar van der Pol» Шаблон:Wayback, J. London Math. Soc., 35, 367—376, (1960).
  2. Van der Pol, B., «On relaxation-oscillations», The London, Edinburgh and Dublin Phil. Mag. & J. of Sci., 2(7), 978—992 (1927).
  3. Van der Pol, B. and Van der Mark, J., «Frequency demultiplication», Nature, 120, 363—364, (1927).
  4. Kanamaru, T., «Van der Pol oscillator» Шаблон:Wayback, Scholarpedia, 2(1), 2202, (2007).
  5. Cartwright, J., Eguiluz, V., Hernandez-Garcia, E. and Piro, O., «Dynamics of elastic excitable media», Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9, 2197—2202, (1999).
  6. Kaplan, D. and Glass, L., Understanding Nonlinear Dynamics, Springer, 240—244, (1995)