Простая функция
Перейти к навигации
Перейти к поиску
Проста́я фу́нкция — измеримая функция, принимающая конечное число значений.
Определение
Функция определённая на измеримом пространстве называется простой, если существует разбиение на конечное число не пересекающихся измеримых множеств и набор чисел (обычно вещественных или комплексных) таких что для любого .
Замечания
- Если — вероятностное пространство, то простая функция называется просто́й случа́йной величино́й.
- Если — пространство с мерой, простая, причём
- и ,
- то интегрируема по Лебегу, и
- .
Пример
Пусть , где — борелевская сигма-алгебра на , а — мера Лебега. Тогда функция
простая, ибо измерима и принимает три разных значения.