Теорема Борсука — Улама
Теорема Бо́рсука — У́лама — классическая теорема алгебраической топологии, утверждающая, что всякая непрерывная функция, отображающая -мерную сферу в -мерное евклидово пространство для некоторой пары Шаблон:Iw имеет общее значение. Неформально утверждение известно как «теорема о температуре и давлении»: в любой момент времени на поверхности Земли найдутся антиподальные точки с равной температурой и равным давлением[1]; одномерный случай обычно иллюстрируют двумя диаметрально противоположными точками экватора с равной температурой.
Впервые утверждение встречается у Люстерника и Шнирельмана в работе 1930 года[2][3]; первое доказательство опубликовано в 1933 году Борсуком, который сослался на Улама как автора формулировки.
Формулировка
Для непрерывной функции , где — сфера в -мерном евклидовом пространстве, существуют такие две диаметрально противоположные точки , что .
Вариации и обобщения
- Шаблон:Якорь Эквивалентное утверждение — теорема об общем нуле: всякая нечётная (относительно диаметральной противоположности) непрерывная функция из -мерной сферы в -мерное евклидово пространство в одной из точек обращается в нуль: . Эквивалентность устанавливается введением для непрерывной функции нечётной функции . В одномерном случае теорема об общем нуле непосредственно следует из теоремы о промежуточном значении; общее доказательство использует Шаблон:Iw (алгебраико-топологический вариант), либо выводится из леммы Такера (комбинаторный вариант; лемма Такера при этом считается комбинаторным аналогом теоремы Борсука — Улама).
- В 1954 году Абрам Ильич Фет обобщил результатШаблон:Sfn: утверждение теоремы имеет место не только для соотношения антиподов, но и для произвольной инволюции -мерной сферы, то есть, для всякой инволюции и любой непрерывной функции найдётся такая точка , что [4][5].