CKM-матрица
Шаблон:Ароматы и квантовые числа
CKM-ма́трица, ма́трица Каби́ббо — Кобая́си — Маска́вы (ККМ-матрица, матрица смешивания кварков, иногда раньше называлась KM-матрица) в Стандартной модели физики элементарных частиц — унитарная матрица, которая содержит информацию о силе слабых взаимодействий, изменяющих аромат. Технически, она определяет преобразование между двумя базисами квантовых состояний: состояниями свободно движущихся кварков (то есть их массовыми состояниями) и состояниями кварков, участвующих в слабых взаимодействиях. Она важна также для понимания нарушения CP-симметрии. Точное математическое определение этой матрицы дано в статье по основам Стандартной модели. Эта матрица была предложена для трёх поколений кварков японскими физиками Макото Кобаяси и Тосихидэ Маскава, которые добавили одно поколение к матрице, ранее предложенной Николой Кабиббо.
Матрица
Слева мы видим CKM-матрицу вместе с вектором сильных собственных состояний кварков, а справа имеем слабые собственные состояния кварков. ККМ-матрица описывает вероятность перехода от одного кварка Шаблон:Math к другому кварку Шаблон:Math. Эта вероятность пропорциональна
Величины значений в матрице были установлены экспериментально и равны приблизительно[1]:
Таким образом, CKM-матрица довольно близка к единичной матрице.
Подсчёт
Чтобы идти дальше, необходимо подсчитать количество параметров в этой матрице Шаблон:Math, которые проявляются в экспериментах и, следовательно, физически важны. Если есть Шаблон:Math поколений кварков (Шаблон:Math ароматов), то
- комплексная матрица Шаблон:Math содержит Шаблон:Math действительных чисел.
- Ограничивающее условие унитарности Шаблон:Math. Следовательно, для диагональных компонент (Шаблон:Math) существует Шаблон:Math ограничений, а для остающихся компонент — Шаблон:Math. Количество независимых действительных чисел в унитарной матрице равно Шаблон:Math.
- Одна фаза может быть поглощена каждым кварковым полем. Общая фаза ненаблюдаема. Следовательно, количество независимых чисел уменьшается на Шаблон:Math, то есть общее количество свободных переменных равно Шаблон:Math.
- Из них Шаблон:Math — углы вращения, называемые кварковыми углами смешивания.
- Оставшиеся Шаблон:Math являются комплексными фазами, вызывающими нарушение CP-инвариантности.
Если число поколений кварков Шаблон:Math (исторически такой была первая версия CKM-матрицы, когда были известны только два поколения), есть только один параметр — угол смешивания между двумя поколениями кварков. Он называется угол Кабиббо в честь Николы Кабиббо.
В Стандартной модели Шаблон:Math, следовательно, есть три угла смешивания и одна комплексная фаза, нарушающая CP-симметрию.
Наблюдения и предсказания

Идея Кабиббо появилась из-за необходимости объяснения двух наблюдаемых явлений:
- переходы Шаблон:Math и Шаблон:Math, Шаблон:Math имели похожие амплитуды.
- переходы с изменением странности Шаблон:Math имели амплитуды, равные 1/4 от амплитуд переходов без изменения странности (Шаблон:Math).
Решение Кабиббо состояло в постулировании универсальности слабых переходов, чтобы решить проблему 1, и угла смешивания Шаблон:Math (теперь называемого углом Кабиббо) между [[d-кварк|Шаблон:Math-]] и [[s-кварк|Шаблон:Math-кварками]], чтобы решить проблему 2.
Для двух поколений кварков нет нарушающей CP-симметрию фазы, как было показано выше. Поскольку нарушение CP-симметрии наблюдалось в распадах нейтральных каонов уже в 1964 году, появление немногим позже Стандартной модели было ясным сигналом о третьем поколении кварков, как было указано в 1973 году Кобаяси и Маскавой. Открытие [[b-кварк|Шаблон:Math-кварка]] в Фермилабе (группой Леона Ледермана) в 1977 году немедленно привело к началу поисков ещё одного кварка третьего поколения — [[t-кварк|Шаблон:Math-кварка]].
Универсальность слабых переходов
Ограничение по унитарности CKM-матрицы для диагональных компонент может быть записано как
для всех поколений Шаблон:Math. Это предполагает, что сумма всех связей кварка [[u-кварк|Шаблон:Math]]-типа со всеми кварками [[d-кварк|Шаблон:Math]]-типа одинакова для всех поколений. Никола Кабиббо в 1967 году назвал это соотношение слабой универсальностью. Теоретически, это следствие того факта, что все дублеты SU(2) взаимодействуют с векторными бозонами слабых взаимодействий с одинаковой константой связи. Это подтверждено во многих экспериментах.
Треугольники унитарности
Оставшиеся ограничения по унитарности ККМ-матрицы могут быть записаны в форме
Для любых фиксированных и различных Шаблон:Math и Шаблон:Math это ограничение накладывается на три комплексных числа, одно для каждого Шаблон:Math, что означает, что эти числа являются вершинами треугольника на комплексной плоскости. Существует шесть вариантов Шаблон:Math и Шаблон:Math, поэтому и шесть таких треугольников, каждый из которых называется треугольником унитарности. Их формы могут быть очень разными, но они все имеют одинаковую площадь, которую можно отнести к нарушающей CP-симметрию фазе. Площадь исчезает для специфических параметров в Стандартной модели, для которых нет нарушения CP-симметрии. Ориентация треугольников зависит от фаз кварковых полей.
Поскольку как три стороны, как и три угла каждого треугольника могут быть измерены в прямых экспериментах, проводится серия тестов для проверки замкнутости треугольников. Это задача для таких экспериментов, как японский BELLE, калифорнийский BaBar и эксперимент LHCb проекта LHC.
Параметризации
Для полного задания CKM-матрицы требуется четыре независимых параметра. Было предложено множество параметризаций, но наиболее популярны три.
KM-параметры
Изначально параметризация Кобаяси и Маскавы использовала три угла (Шаблон:Math) и фазу CP-нарушения (Шаблон:Math).
где Шаблон:Math — угол Кабиббо, Шаблон:Math и Шаблон:Math — соответственно косинус и синус угла Шаблон:Math.
«Стандартные» параметры
«Стандартная» параметризация CKM-матрицы использует три угла Эйлера (Шаблон:Math, Шаблон:Math, Шаблон:Math) и фазу CP-нарушения (Шаблон:Math)[2]. Смешивание между поколениями кварков Шаблон:Math и Шаблон:Math исчезает, если угол смешивания Шаблон:Math стремится к нулю. Здесь Шаблон:Math — угол Кабиббо, Шаблон:Math и Шаблон:Math — соответственно косинус и синус угла Шаблон:Math.
На текущий момент наиболее точные значения стандартных параметров[3][4]:
- θ12 = Шаблон:Val°,
- θ13 = Шаблон:Val°,
- θ23 = Шаблон:Val°,
- δ13 = Шаблон:Val радиана.
Параметры Вольфенштейна
Третья параметризация CKM-матрицы, введёна Линкольном Вольфенштейном, использует параметры Шаблон:Math, Шаблон:Math, Шаблон:Math и Шаблон:Math[5]. Параметры Вольфенштейна являются числами порядка единицы и связаны со «стандартной» параметризацией следующими соотношениями:
Параметризация Вольфенштейна CKM-матрицы является аппроксимацией «стандартной» параметризации. Если ограничиться членами разложения до порядка Шаблон:Math, она может быть представлена следующим образом:
CP-нарушение может быть определено измерением Шаблон:Math.
Используя значения из предыдущего подраздела, можно получить следующие значения параметров Вольфенштейна[4]:
- Шаблон:Math = Шаблон:Val,
- Шаблон:Math = Шаблон:Val,
- Шаблон:Math = Шаблон:Val,
- Шаблон:Math = Шаблон:Val.
См. также
- Стандартная модель (основы) и нарушение CP-инвариантности.
- Квантовая хромодинамика, аромат и сильная CP-проблема.
- PMNS-матрица, аналогичная матрица смешивания для нейтрино.
- Угол Кабиббо
Примечания
Ссылки
- Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. М.: Физматлит, 2006, 368 с, страница 153. (djvu)
- Шаблон:Книга
- Povh, Bogdan et al., (1995). Particles and Nuclei: An Introduction to the Physical Concepts. New York: Springer. ISBN 3-540-20168-8
- CP violation, by I.I. Bigi and A.I. Sanda (Cambridge University Press, 2000) [ISBN 0-521-44349-0]
- Particle Data Group on CP violation
- The Babar experiment at SLAC and the BELLE experiment at KEK Japan
- N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.
- M. Kobayashi and K. Maskawa, Prog. Theor. Phys. 49 (1973) 652.Шаблон:Недоступная ссылка
- Новосибирские физики опровергнут треугольность идеального треугольника KEK
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Значения получены из значений параметров Вольфенштейна из издания Review of Particle Physics 2008 года.
- ↑ 4,0 4,1 Шаблон:Статья
- ↑ Шаблон:Статья