Граф Хивуда

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Граф

Граф Хивуда — ненаправленный граф с 14 вершинами и 21 ребром, названный в честь Перси Джона Хивуда[1].

Комбинаторные свойства

Граф является кубическим и все циклы в графе содержат шесть и более рёбер. Любой меньший кубический граф содержит меньшие циклы, так что этот граф является (3,6)-клеткой, наименьшим кубическим графом с обхватом 6. Он является также дистанционно-транзитивным (смотрите список Фостера), а потому дистанционно-регулярным[2]. В графе Хивуда имеется 24 паросочетания, и во всех паросочетаниях рёбра, не входящие в паросочетание, образуют гамильтонов цикл. Например, рисунок показывает вершины графа, помещённые на окружность и образующие цикл, а диагонали внутри окружности образуют паросочетание. Если разделить рёбра цикла на два паросочетания, мы получим три совершенных паросочетания (то есть, 3-цветную раскраску рёбер) восемью различными способами[2]. Ввиду симметрии графа любые два совершенных паросочетания и любые два гамильтоновых цикла можно преобразовать из одного в другое[3].

В графе Хивуда 28 циклов, содержащих по шесть вершин. Каждый такой цикл не связан в точности с тремя другими 6-вершинными циклами. Среди этих трёх циклов каждый является симметрической разностью двух других. Граф в котором каждая вершина соответствует циклу из 6 вершин графа Хивуда, а дуги соответствуют несвязным парам — это граф Коксетера[4].

Геометрические и топологические свойства

Граф Хивуда является тороидальным графом, то есть его можно вложить без пересечений в тор. Одно из вложений такого типа размещает вершины и рёбра графа в трёхмерном евклидовом пространстве в виде множества вершин и рёбер невыпуклого многогранника с топологией тора, многогранника Силаши. Граф назван в честь Перси Джона Хивуда, доказавшего в 1890 году, что для раскраски любого разбиения тора на многоугольники достаточно семи цветов[5][6]. Граф Хивуда образует разбиение тора на семь взаимно смежных областей, что показывает, что граница точна. Граф Хивуда является также графом Леви плоскости Фано, то есть графом, представляющим инцидентность точек и прямых в этой геометрии. В этой интерпретации циклы длины 6 в графе Хивуда соответствуют треугольникам поверхности Фано. Граф Хивуда имеет число скрещиваний равное 3 и является наименьшим кубическим графом с таким числом скрещиваний[7]. Вместе с графом Хивуда существует 8 различных графов порядка 14 с числом скрещиваний 3. Граф Хивуда является графом единичных расстояний — его можно вложить в плоскость так, что смежные вершины окажутся в точности на расстоянии единица, при этом никакие две вершины не попадут на одно и то же место плоскости и никакая точка не окажется внутри ребра. Однако у известных вложений этого типа отсутствует симметрия, присущая графу[8].

Алгебраические свойства

Группа автоморфизмов графа Хивуда изоморфна проективной линейной группе PGL2(7), группе порядка 336[9]. Он действует транзитивно на вершины, на рёбра и на дуги графа, поэтому граф Хивуда является симметричным. Имеются автоморфизмы, переводящие любую вершину в любую другую вершину и любое ребро в любое другое ребро. Согласно списку Фостера граф Хивуда, обозначенный как F014A, является единственным кубическим графом с 14 вершинами[10][11]. Характеристический многочлен матрицы графа Хивуда — (x3)(x+3)(x22)6. Спектр графа равен (3)1(2)6(2)631 Это единственный граф с таким многочленом, который определяется спектром.

Хроматический многочлен графа равен:

πG(z)=z(z1)(z1220z11+190z101140z9+4845z815476z7
+38340z674587z5+113433z4131700z3+110794z260524z+16161).

Галерея

Примечания

Шаблон:Примечания

Шаблон:Rq