Пара топологических пространств: различия между версиями
imported>РобоСтася м checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101) |
(нет различий)
|
Текущая версия от 06:12, 15 сентября 2024
Пара топологических пространств — упорядоченная пара где — топологическое пространство, а — подпространство (с топологией подпространства).
Отображение пар определяется как отображение такое, что .
Понятие топологической пары удобно для определения относительных гомологий , для которых как раз требуется, чтобы вкладывалось в . Для хороших пространств (например, если — клеточный подкомплекс клеточного комплекса Шаблон:Sfn) выполнено равенство
Свойства
- Существует функтор из пространств в пары, который отображает пространство в пару ,
Относительные гомологии
Шаблон:Main Если дана пара топологических пространств , то для любой теории гомологий можно рассмотреть группу относительных цепей . Тогда гомологии полученного цепного комплекса обозначают и называют гомологиями пары.
Понятие относительных гомологий позволяет построить так называемую длинную точную последовательность пары:
Вариации и обобщения
Родственным понятием является понятие тройки , где . Тройки используются в теории гомотопий. Часто для пространств с отмеченной точкой тройку записывают как , где [1].