Двадцатичетырёхъячейник

Материал из testwiki
Версия от 16:03, 7 июля 2024; imported>Чинк (В культуре)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску
Двадцатичетырёхъячейник

Диаграмма Шлегеля: проекция (перспектива) двадцатичетырёхъячейника в трёхмерное пространство
Тип Правильный четырёхмерный политоп
Символ Шлефли {3,4,3}
Ячеек 24
Граней 96
Рёбер 96
Вершин 24
Вершинная фигура Куб
Двойственный политоп Он же (самодвойственный)
Проекция вращающегося двадцатичетырёхъячейника в трёхмерное пространство
Ортогональная проекция вращающегося двадцатичетырёхъячейника на плоскость
Развёртка

Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от Шаблон:Lang-grc — «двадцать», Шаблон:Lang-grc2 — «четыре» и Шаблон:Lang-grc2 — «место, пространство»), — один из шести правильных многоячейников в четырёхмерном пространстве.

Открыт Людвигом Шлефли в середине 1850-х годов[1]. Символ Шлефли двадцатичетырёхъячейника — {3,4,3}.

Двойственен сам себе; двадцатичетырёхъячейник — единственный самодвойственный правильный политоп размерности больше 2, не являющийся симплексом. Этим обусловлена уникальность двадцатичетырёхъячейника: в отличие от пяти других правильных многоячейников, он не имеет аналога среди платоновых тел.

Описание

Ограничен 24 трёхмерными ячейками — одинаковыми октаэдрами. Угол между двумя смежными ячейками равен в точности 120.

Его 96 двумерных граней — одинаковые правильные треугольники. Каждая грань разделяет 2 примыкающие к ней ячейки.

Имеет 96 рёбер равной длины, расположенных так же, как рёбра трёх тессерактов с общим центром. На каждом ребре сходятся по 3 грани и по 3 ячейки.

Имеет 24 вершины, расположенные так же, как вершины трёх шестнадцатиячейников с общим центром. В каждой вершине сходятся по 8 рёбер, по 12 граней и по 6 ячеек.

Двадцатичетырёхъячейник можно рассматривать как полностью усечённый шестнадцатиячейник.

Двадцатичетырёхъячейник можно собрать из двух равных тессерактов, разрезав один из них на 8 одинаковых кубических пирамид, основания которых — 8 ячеек тессеракта, а вершины совпадают с его центром, и затем приложив эти пирамиды к 8 кубическим ячейкам другого тессеракта. В трёхмерном пространстве аналогичным образом можно из двух равных кубов собрать ромбододекаэдр — который, однако, не является правильным.

В координатах

Первый способ расположения

Двадцатичетырёхъячейник можно разместить в декартовой системе координат так, чтобы 8 из его вершин имели координаты (±2;0;0;0), (0;±2;0;0), (0;0;±2;0), (0;0;0;±2) (эти вершины расположены так же, как вершины шестнадцатиячейника), а остальные 16 вершин — координаты (±1;±1;±1;±1) (они расположены так же, как вершины тессеракта; кроме того, те 8 из них, среди координат которых нечётное число отрицательных, образуют вершины другого шестнадцатиячейника, а прочие 8 — вершины третьего шестнадцатиячейника).

При этом ребром будут соединены те вершины, у которых все четыре координаты различаются на 1 — либо одна из координат различается на 2, а остальные совпадают.

Начало координат (0;0;0;0) будет центром симметрии двадцатичетырёхъячейника, а также центром его вписанной, описанной и полувписанных трёхмерных гиперсфер.

Второй способ расположения

Кроме того, двадцатичетырёхъячейник можно разместить так, чтобы координаты всех его 24 вершин были всевозможными перестановками чисел (±1;±1;0;0) (эти точки — центры 24 ячеек многоячейника, описанного в предыдущем разделе).

При этом ребром будут соединены те вершины, у которых какие-либо две координаты различаются на 1, а другие две совпадают.

Центром многоячейника снова будет начало координат.

Ортогональные проекции на плоскость

Шаблон:-

Метрические характеристики

Если двадцатичетырёхъячейник имеет ребро длины a, то его четырёхмерный гиперобъём и трёхмерная гиперплощадь поверхности выражаются соответственно как

V4=2a4
S3=82a311,3137085a3.

Радиус описанной трёхмерной гиперсферы (проходящей через все вершины многоячейника) при этом будет равен

R=a,

радиус внешней полувписанной гиперсферы (касающейся всех рёбер в их серединах) —

ρ1=32a0,8660254a,

радиус внутренней полувписанной гиперсферы (касающейся всех граней в их центрах) —

ρ2=63a0,8164966a,

радиус вписанной гиперсферы (касающейся всех ячеек в их центрах) —

r=22a0,7071068a.

Заполнение пространства

Двадцатичетырёхъячейниками можно замостить четырёхмерное пространство без промежутков и наложений.

В культуре

Является главным антагонистом в одном из эпизодов сетевого мультсериала «Animator vs. Animation» — «Animation vs. Geometry».

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Навигация

Шаблон:Основные выпуклые правильные и однородные политопы в размерностях 2-10 Шаблон:Многогранники Шаблон:Символ Шлефли

  1. George Olshevsky. Icositetrachoron // Glossary for Hyperspace.