Шестнадцатиячейник
| Шестнадцатиячейник | |
|---|---|
Диаграмма Шлегеля: проекция (перспектива) шестнадцатиячейника в трёхмерное пространство | |
| Тип | Правильный четырёхмерный политоп |
| Символ Шлефли | {3,3,4} |
| Ячеек | 16 |
| Граней | 32 |
| Рёбер | 24 |
| Вершин | 8 |
| Вершинная фигура | Правильный октаэдр |
| Двойственный политоп | Тессеракт |


Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник[1] — один из шести правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от Шаблон:Lang-grc — «шесть», Шаблон:Lang-grc2 — «десять» и Шаблон:Lang-grc2 — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб[2] (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.
Открыт Людвигом Шлефли в середине 1850-х годов[3]. Символ Шлефли шестнадцатиячейника — {3,3,4}.
Описание
Ограничен 16 трёхмерными ячейками — одинаковыми правильными тетраэдрами. Угол между двумя смежными ячейками равен в точности
Его 32 двумерных грани — одинаковые правильные треугольники. Каждая грань разделяет 2 примыкающие к ней ячейки.
Имеет 24 ребра равной длины. На каждом ребре сходятся по 4 грани и по 4 ячейки.
Имеет 8 вершин. В каждой вершине сходятся по 6 рёбер, по 12 граней и по 8 ячеек. Любая вершина соединена ребром с любой другой — кроме вершины, симметричной ей относительно центра многоячейника.
Шестнадцатиячейник можно представить как две одинаковых правильных октаэдрических пирамиды, приложенные друг к другу своими основаниями, — либо как четырёхмерную Шаблон:Не переведено 5, построенную на двух квадратах.
В координатах
Шестнадцатиячейник можно расположить в декартовой системе координат так, чтобы его 8 вершин имели координаты
При этом сечения многоячейника 6 координатными плоскостями будут представлять собой 6 квадратов, вершины и рёбра которых — соответственно вершины и рёбра многоячейника.
Каждая из 16 ячеек многоячейника будет располагаться в одном из 16 ортантов четырёхмерного пространства.
Начало координат будет центром симметрии шестнадцатиячейника, а также центром его вписанной, описанной и полувписанных трёхмерных гиперсфер.
Поверхность шестнадцатиячейника при этом будет геометрическим местом точек чьи координаты удовлетворяют уравнению
а внутренность многоячейника — геометрическим место точек, для которых
Ортогональные проекции на плоскость
Метрические характеристики
Если шестнадцатиячейник имеет ребро длины то его четырёхмерный гиперобъём и трёхмерная гиперплощадь поверхности выражаются соответственно как
Радиус описанной трёхмерной гиперсферы (проходящей через все вершины многоячейника) при этом будет равен
радиус внешней полувписанной гиперсферы (касающейся всех рёбер в их серединах) —
радиус внутренней полувписанной гиперсферы (касающейся всех граней в их центрах) —
радиус вписанной гиперсферы (касающейся всех ячеек в их центрах) —
Заполнение пространства
Шестнадцатиячейниками можно замостить четырёхмерное пространство без промежутков и наложений.
Примечания
Ссылки
Шаблон:Основные выпуклые правильные и однородные политопы в размерностях 2-10
Шаблон:Многогранники
Шаблон:Символ Шлефли
- ↑ Шаблон:ВТ-ЭСБЕ
- ↑ Е. Ю. Смирнов. Группы отражений и правильные многогранники. — М.: МЦНМО, 2009. — С. 44. (Шаблон:Wayback)
- ↑ George Olshevsky. Hexadecachoron // Glossary for Hyperspace.