Теорема Кейси

Теорема Кейси или Кэзи — теорема в евклидовой геометрии, обобщающая неравенство Птолемея. Названа по имени ирландского математика Джона Кейси.
Формулировка
Пусть — окружность радиуса . Пусть — (в указанном порядке) четыре непересекающихся окружности, лежащие внутри и касающиеся её. Обозначим через длину отрезка между точками касания внешней общей касательной окружностей . ТогдаШаблон:Sfn:
В вырожденном случае, когда все четыре окружности сводятся к точкам (окружности радиуса 0), получается в точности теорема Птолемея.
Замечания
Теорема Кейси справедлива для шести попарных касательных четырёх окружностей, касающихся одной общей окружности не только внутренним образом, как разобрано выше, но и внешним образом, как показано на рис. ниже.

При этом выполняется обычная формула теоремы Кэйси:
- .
- В вырожденном случае, когда три из четырёх окружностей сводятся к точкам (окружности радиуса 0), и одна сторона четырёхугольника вырождается в точку, а три оставшиеся стороны четырёхугольника образуют равносторонний треугольник, получается в точности обобщённая теорема Помпею.
- В вырожденном случае, когда все четыре окружности сводятся к точкам (окружности радиуса 0), в последнем случае также получается теорема Птолемея.
Доказательство
Следующее доказательство принадлежит (согласно БоттемаШаблон:Sfn) ЦахариасуШаблон:Sfn. Обозначим радиус окружности через , а точку касания с окружностью через . Будем использовать обозначения для центров окружностей. Заметим, что из теоремы Пифагора следует
Попробуем выразить длины через точки . По теореме косинусов в треугольнике ,
Поскольку окружности касаются,
Пусть — точка на окружности . Согласно теореме синусов в треугольнике
Так что,
и после подстановки полученного выражения в формулу выше,
Наконец, искомая длина
Теперь можно преобразовать левую часть с помощью теоремы Птолемея применительно к вписанному четырёхугольнику :
Вариации и обобщения
Можно показать, что четыре окружности не обязательно должны лежать внутри большой окружности. Фактически, они могут также касаться её и снаружи. В этом случае следует сделать следующие измененияШаблон:Sfn:
- Если касаются с одной стороны (обе изнутри или обе снаружи), — длина отрезка внешних касательных.
- Если касаются с разных сторон (одна изнутри, другая снаружи), — длина отрезка внутренних касательных.
- Обратное утверждение теореме Кейси также верноШаблон:Sfn. Таким образом, если равенство выполняется, окружности касаются.
- Например, для рис. ниже имеем: .
- Понятия "длина отрезка внешних касательных" и "длина отрезка внутренних касательных" могут ввести в заблуждение, ибо эти касательные могут быть проведены как внутри, так и снаружи общей связующей окружности, поскольку сходственные пары касательных двух окружностей всегда равны. Тут важнее оперировать не понятиями "внешних касательных" и "внутренних касательных", а понятиями наибольшей и наименьшей касательной для двух окружностей, ибо к двум окружностям можно провести две пары сходственных касательных, всегда равные для каждой пары, но не равные между разными парами касательных. Это прекрасно видно при сравнении двух рисунков.
- Как располагается пара окружностей относительно одного из двух возможных типов проведенных к ним общих касательных можно узнать по значению их инверсного расстояния I, которое может принимать 3 значения: 0, +1 и -1.
Приложения
Теорему Кейси и ей обратную можно использовать для доказательства различных утверждений евклидовой геометрии. Например, самое короткое известное доказательствоШаблон:Sfn теоремы Фейербаха использует обратную теорему Кейси.