Тетраэдральное число

Тетраэдра́льные числа, называемые также треугольными пирамидальными числами — это фигурные числа, представляющие пирамиду, в основании которой лежит правильный треугольник. -е по порядку тетраэдра́льное число определяется как сумма первых треугольных чисел :
Начало последовательности тетраэдральных чисел:
- 1, Шаблон:Nums, … (Шаблон:OEIS).
Формула
Общая формула для -го тетраэдрального числа:
Также формула может быть выражена через биномиальные коэффициенты:
Свойства
Тетраэдральные числа находятся на 4-й позиции каждой строки в треугольнике Паскаля.
Только три тетраэдральных числа являются квадратными числами:
- ,
- ,
- .
Пять тетраэдральных чисел одновременно являются треугольными (Шаблон:OEIS):
- ,
- ,
- ,
- ,
- ,
Единственным пирамидальным числом, которое одновременно квадратное и кубическое, является число 1.
Можно заметить, что:
Ряд из обратных тетраэдральных чисел является телескопическим и поэтому сходится:
Одна из «гипотез Поллока» (1850 год): каждое натуральное число представимо как сумма не более пяти тетраэдральных чисел. До сих пор не доказана, хотя проверена для всех чисел, меньших 10 миллиардовШаблон:Sfn[1].
Многомерное обобщение
Трёхмерные тетраэдральные числа можно обобщить на четыре и более измерений, аналогично переходу от треугольных чисел к тетраэдральным. Аналогом тетраэдральных чисел в -мерном пространстве служат «симплексные числа», называемые также гипертетраэдральнымиШаблон:Sfn:
- .
Их частным случаем выступают: