Гексеракт: различия между версиями
imported>РобоСтася м checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101) |
(нет различий)
|
Текущая версия от 19:25, 13 сентября 2024
| Гексеракт | |
|---|---|
| Тип | Правильный шестимерный политоп |
| Символ Шлефли | {4,3,3,3,3} |
| 5-мерных ячеек | 12 |
| 4-мерных ячеек | 60 |
| Ячеек | 160 |
| Граней | 240 |
| Рёбер | 192 |
| Вершин | 64 |
| Вершинная фигура | Правильный 5-симплекс |
| Двойственный политоп | 6-ортоплекс |
Гексеракт (Шаблон:Lang-en) — аналог куба в шестимерном пространстве. Определяется как выпуклая оболочка точек .
Также называется додека-6-топ, додекапетон или 6-гиперкуб.
Связанные политопы
Двойственное гексеракту тело — 6-ортоплекс, шестимерный аналог октаэдра.
Если применить к гексеракту альтернацию (удаление чередующихся вершин), можно получить однородный шестимерный многогранник, называемый полугексеракт, который является представителем семейства полугиперкубов.
Свойства
6-гиперобъём гексеракта можно вычислить по формуле ( — длина ребра):
5-гиперобъём гиперповерхности ( — длина ребра):
Радиус описанной гиперсферы ( — длина ребра):
Радиус вписанной гиперсферы ( — длина ребра):
Состав
Гексеракт состоит из:
- 12 пентерактов
- 60 тессерактов
- 160 кубов или ячеек.
- 240 квадратов или граней
- 192 отрезка или ребра
- 64 точки или вершины
Визуализация
Гексеракт можно визуализировать либо параллельным, либо центральным проецированием. В первом случае обычно применяется косоугольная параллельная проекция, которая представляет собой 2 равных гиперкуба размерности n-1, один из которых может быть получен в результате параллельного переноса второго (для гексеракта это 2 пентеракта), вершины которых попарно соединены. Во втором случае обычно используют диаграмму Шлегеля, которая выглядит как гиперкуб размерности n-1, вложенный в гиперкуб той же размерности, у которых вершины также попарно соединены (для гексеракта проекция представляет собой пентеракт, вложенный в другой пентеракт).
Также применяются и другие способы проецирования.
Изображения
| Файл:Hexeract.ogv Проекция вращающегося гексеракта |
Ортогональная проекция гексеракта |
Ссылки
- Коксестер, Правильные политопы, (третье издание, 1973), Dover edition, ISBN 0-486-61480-8
- Джордж Ольшевски. Glossary for Hyperspace (Словарь терминов многомерной геометрии)
Шаблон:Geometry-stub Шаблон:Rq
Шаблон:Основные выпуклые правильные и однородные политопы в размерностях 2-10 Шаблон:Многогранники