Риманово многообразие

Материал из testwiki
Версия от 08:16, 26 ноября 2024; imported>TheGrysha (Преамбула)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Риманово многообразие, или риманово пространство, (M,g) — это (вещественное) гладкое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом. Другими словами, риманово многообразие — это дифференцируемое многообразие, в котором касательное пространство в каждой точке является конечномерным евклидовым пространством.

Это позволяет определить различные геометрические понятия на римановых многообразиях, такие как углы, длины кривых, площади (или объёмы), кривизну, градиент функции и дивергенции векторных полей.

Риманова метрика g — это положительно определённый симметрический тензор — метрический тензор; точнее — это гладкое ковариантное симметричное положительно определенное тензорное поле валентности (0,2).

Не стоит путать римановы многообразия с римановыми поверхностями — многообразиями, которые локально выглядят как склейки комплексных плоскостей.

Термин назван в честь немецкого математика Бернхарда Римана.

Обзор

Касательное расслоение TM гладкого многообразия M ставит в соответствие каждой точке M векторное пространство, называемое касательным, и на этом касательном пространстве можно ввести скалярное произведение. Если такой набор введённых скалярных произведений на касательном расслоении многообразия изменяется гладко от точки к точке, то с помощью таких произведений можно ввести метричность на всём многообразии. К примеру, гладкая кривая α(t): [0,1]M имеет касательный вектор α(t0) в касательном пространстве TM(t0) в любой точке t0(0,1), и каждый такой вектор имеет длину α(t0), где обозначает норму, индуцированную скалярным произведением на TM(t0). Интеграл по этим длинам даёт длину всей кривой α:

L(α)=01α(t)dt.

Гладкость α(t) для t в [0,1] гарантирует, что интеграл L(α) существует и длина кривой определена.

Во многих случаях для того чтобы перейти от линейно-алгебраической концепции к дифференциально геометрической, гладкость очень важна.

Каждое гладкое подмногообразие Rn имеет индуцированную метрику g: скалярное произведение на каждом касательном пространстве — это просто скалярное произведение на Rn. Имеет место и обратный факт: теорема Нэша о регулярных вложениях утверждает, что любое достаточно гладкое риманово многообразие может быть реализовано как подмногообразие с индуцированной метрикой в Rn достаточной большой размерности n.

Измерение длин и углов при помощи метрики

На римановом многообразии длина сегмента кривой, заданной параметрически (как вектор-функция x(t) параметра t, меняющегося от a до b), равна:

L=abgijdxidtdxjdtdt=x(a)x(b)gijdxidxj.

Угол θ  между двумя векторами, U=uixi  и V=vjxj  (в искривлённом пространстве векторы существуют в касательном пространстве в точке многообразия), определяется выражением:

cosθ=gijuivj|gijuiuj||gijvivj|.

Обобщения

Литература