Майорановский фермион

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Информация о частице В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году[1]. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целомШаблон:Sfn.

В физике элементарных частиц

Предполагается, что нейтрино может быть либо фермионом Майораны, либо фермионом ДиракаСтандартной модели все фермионы, включая нейтрино, являются дираковскими). Экспериментального подтверждения этого всё ещё нет, и теория Майораны, в итоге, может оказаться опровергнутойШаблон:Sfn. В первом случае различие между нейтрино и антинейтрино определяется только их спиральностью: превращение нейтрино в антинейтрино можно осуществить переворотом спина (или, например, переходом в систему отсчёта, в которой импульс нейтрино направлен в противоположном направлении, что, правда, осуществимо лишь при ненулевой массе нейтрино). Если электронное нейтрино является фермионом Майораны и при этом массивно, то некоторые изотопы могут испытывать безнейтринный двойной бета-распад; при существующей чувствительности экспериментов этот распад пока не обнаружен, хотя в мире проводятся десятки экспериментов по поиску этого процесса[2][3].

Гипотетические частицы нейтралино в суперсимметричных моделях являются фермионами Майораны. Поэтому открытие майорановских фермионов будет дополнительным аргументом для теорий суперсимметрии[4].

Майорановские частицы, в отличие от дираковских, не могут обладать магнитным дипольным моментом (кроме недиагональных компонент магнитного момента, изменяющих аромат)[5][6][7]. Слабое взаимодействие с электромагнитными полями делает майорановские фермионы кандидатами для частиц холодной тёмной материи[8][9].

16 июля 2013 года коллаборация GERDA сообщила[10], что в результате обработки данных первой фазы долговременного эксперимента, проводящегося в итальянской подземной лаборатории Гран-Сассо на криогенном полупроводниковом мультидетекторе, состоящем из германия, обогащённого германием-76, не был обнаружен безнейтринный двойной бета-распад этого изотопа (нижнее ограничение на период полураспада — не менее 3·1025 лет). Это, как и ряд более ранних и менее чувствительных экспериментов, свидетельствует в пользу того, что нейтрино не является майорановской частицей; точнее, ограничивает сверху так называемую майорановскую массу электронного нейтрино, которая для дираковского фермиона должна быть в точности равна нулю. Установленное верхнее ограничение равно приблизительно Шаблон:Nobr. В настоящее время ряд как действующих, так и находящихся на стадии планирования и разработки экспериментов по поиску безнейтринного двойного бета-распада нацелен на улучшение инструментальной чувствительности. Последние доступные данные для оценок снизу для полураспада и оценок сверху для массы приведены в таблице на февраль 2023 годаШаблон:Sfn.

Оценка параметров[11]
Эксперимент Изотоп Полураспад Масса
Gerda 76Ge 8,0·1025 лет 0,12—0,26 эВ
Majorana 76Ge 1,9·1025 лет 0,24—0,53 эВ
KamLAND-Zen 136Xe 10,7·1025 лет 0,05—0,16 эВ
EXO 136Xe 1,1·1025 лет 0,17—0,49 эВ
CUORE 130Te 1,5·1025 лет 0,11—0,50 эВ
KamLAND-Zen[12] 136Xe 2,3·1026 лет 0,036—0,156 эВ

Уравнение Дирака

Шаблон:Main Математически, фермионы со спином 1/2 описываются уравнением Дирака вида

ictψ(x,t)=[iα𝒙+βmc]ψ(x,t),

где m — масса частицы, а матрицы α и β удовлетворяют антикоммутационным соотношениям {αi, αj} = 2δij, {αi, β} = 0, β2 = 1. Так как выбор этих матриц неоднозначен, то их можно выбрать в виде

α1=(0σ1σ10),α2=(0σ3σ30),α3=(1001),β=(0σ2σ20),

благодаря чему в исходном уравнении все коэффициенты получаются мнимыми. Тогда уравнение, сопряжённое уравнению Дирака, не меняется:

ictψ*(x,t)=[iα𝒙+βmc]ψ*(x,t).

Решению сопряжённого уравнения Дирака соответствует частица, которая является своей собственной античастицей (ψ*=ψ) и называется майорановским фермионом[13]. Существует бесконечное множество матриц αШаблон:Sfn.

Решениями этого уравнения выступает четырёхкомпонентный спинор, но такую систему из четырёх уравнений Майораны можно привести к виду двух независимых систем (из двух уравнений каждая) с решениями в виде левых (ψL) и правых (ψR) майорановских фермионов. Причём массы (mL и mR) в этих новых частицах не обязательно совпадаютШаблон:Sfn:

(it𝒑σ)ψRimRσ2ψR*=0,
(it+𝒑σ)ψLimLσ2ψL*=0.

Эти уравнения можно получить, используя вариационный принцип в общем виде, исходя из лагранжиана электрослабого взаимодействия. Здесь интерес представляет выбор массового слагаемого в лагранжиане, вид которого определяет дираковский или майорановский фермионы используются в теорииШаблон:Sfn. Раньше такого вопроса не возникало из-за предположения о безмассовости нейтрино. Но открытие нейтринных осцилляций поставило вопрос о конечности масс этих истинно нейтральных фермионов. Если представить, что антинейтино и нейтрино на самом деле одна и та же частица (то есть майорановский фермион), то объяснение большой разницы в массах между нейтрино и другими лептонами может дать механизм качелей. Например, в этом случае, масса ненаблюдаемого экспериментально правого нейтрино велика по сравнению с массой электрона (mD), а масса левого составит малую величину порядка mD2/mRШаблон:Sfn.

В физике твёрдого тела

Если в физике высоких энергий вопрос о существовании или несуществовании майорановских фермионов остаётся открытым, то никаких сомнений в существовании в сверхпроводниках аналогичных элементарных возбуждений, предсказанных теоретически, нетШаблон:Sfn. Вопрос заключается в демонстрации каких-либо связанных с ними наблюдаемых эффектов из-за технических сложностейШаблон:Sfn. Некоторые квазичастицы (различные возбуждения коллективных состояний в твердотельных системах, ведущие себя подобно частицам) могут описываться как майорановские фермионы, причём их существует несколько типов в связи с возможностью выбрать размерность системы. В физике твёрдого тела майорановские фермионы также называются майорановскими состояниями, чтобы отличать их от решения трёхмерного уравнения Майораны. Интерес к таким квазичастицам (предсказанным, но пока не открытым экспериментально) связан с тем, что они теоретически могут использоваться в кубитах для топологического квантового компьютера — например, для сохранения информации, — при этом из-за своей нелокальной природы они менее чувствительны к влиянию средыШаблон:Sfn. В одномерных системах говорят не о майорановских фермионах, а о майорановских локализованных состояниях, которые не перемещаются в системе свободно, благодаря чему сохраняют свои свойства из-за большого времени декогеренции[14]. Возможное экспериментальное обнаружение[15]Шаблон:Sfn таких объектов в комбинированных полупроводниковых-сверхпроводниковых наносистемах в сильном магнитном поле требует независимого подтверждения в связи со сложностью детектирования и существованием возможных альтернативных объяснений[16].

Майорановские фермионы могут существовать в экзотических системах, которые достаточно трудно реализуются на практике, например в p-волновых сверхпроводниках[17], полупроводниках в режиме дробного квантового эффекта Холла с фактором заполнением 5/2, на поверхности топологических изоляторов с использованием эффекта близости от s-волновых сверхпроводников[18], либо используя эффект близости между сверхпроводником и ферромагнетиком. С другой стороны, в 2010 году опубликовали две статьи, которые показали, как создать майорановские фермионы в полупроводниковых нанопроволоках[19][20].

Игрушечная модель Китаева

Файл:Kitaev chain.svg
Шаблон:Якорь2 Разбиение фермионов (первый ряд) на «полуфермионы» или майорановские фермионы в игрушечной модели Китаева в топологически тривиальном (второй ряд) и топологически нетрививальном (третий ряд) случаяхШаблон:Sfn.

Алексей КитаевШаблон:Sfn предложил рассмотреть гамильтониан бесспинового p-волнового сверхпроводника в терминах вторичного квантованияШаблон:Sfn

HK=j=1N(t(ajaj+1+aj+1aj)μ(ajaj12)+Δeiθajaj+1+Δeiθaj+1aj),

где t — интеграл перескока, μ — химический потенциал, Δ и θ — амплитуда и фаза параметра порядка. Можно ввести следующие майорановские фермионные операторы для этой задачи c2j1=eiθ/2aj+eiθ/2aj и c2j=i(eiθ/2ajeiθ/2aj), которые приводят к новому виду гамильтониана

HK=i2j=1Nμc2j1c2j+i2j=1N1[(t+Δ)c2jc2j+1+(t+Δ)c2j1c2j+2].

Теперь рассмотрим два предельных случая что проиллюстрировано на рис. 1: в первом случае химический потенциал меньше нуля, μ<0, а остальные параметры обращаются в ноль, Δ=t=0. Тогда спаривание полуфермионов в фермионы происходит тривиальным образом для каждого узла цепочки. Во втором случае, когда химический потенциал равен нулю, μ=0, а интеграл перескока и параметр порядка равны, Δ=t>0, то сумма превращается в слагаемые спаривающие полуфермионы в соседних узлах, причём крайние полуфермионы выпадают из суммы и образуют дважды вырожденный уровень при нуле энергии. Эти два узла можно превратить в обычный фермион сильно нелокальной природы f=1/2(c1+icN). А гамильтониан приобретает обычный диагональный вид при преобразовании dj=1/2(c2j+ic2j+1), dj=1/2(c2jic2j+1)Шаблон:Sfn:

Ht=2tj=1L1(djdj12).

Фактически эта задача не имеет отношения к реальности, но показывает как получить майорановские связные состояния и какой гамильтониан во взаимодействующей системе должен появиться. В качестве возможного материала для реализации майорановских состояний Китаев предложил использовать нанопроволоки из p-волнового сверхпроводника, то есть одномерные сверхпроводники с триплетным состояниями куперовских пар.

Полупроводниковые нанопроволоки

Файл:Majorana.ogg
Шаблон:Якорь2 Формирование топологического закона дисперсии с использованием ур. 2 при последовательном включении спин-орбитального взаимодействия, сверхпроводимости и приложении магнитного поля

В работах 2010 годаШаблон:SfnШаблон:Sfn наметился путь реализации майорановских фермионов на практике. Основное достижение заключалось в понимании влияния различных эффектов на майорановские связные состояния. В работеШаблон:Sfn рассматривался гамильтониан (постоянная Планка равна единице) вида

H=Ψ[(k22mμ)τzσ0+αkτzσz+ΔZτ0σx+Δscτxσ0]Ψdy, (1)

где волновая функция имеет вид Ψ=(ψ,ψ,ψ,ψ). Первое слагаемое в подынтегральном выражении отвечает за кинетическую энергию частиц с учётом химического потенциала, второе — спин-орбитальное взаимодействие, третье — зеемановская энергия, четвёртое — сверхпроводимость. Нанопроволока ориентирована в направлении y, спин-орбитальное взаимодействие вдоль x, а магнитное поле вдоль z. Матрицы Паули σ, τ действуют в спиновом пространстве и в пространстве частиц-античастиц. Индекс 0 отвечает за единичную матрицу. Гамильтониан имеет собственные значения вида

E±2=ΔZ2+Δsc2+(k22mμ)2+(αk)2±2ΔZ2Δsc2+(k22mμ)2((αk)2+ΔZ2). Шаблон:Якорь2

Вблизи нуля волнового вектора возникает запрещённая зона Δ=|ΔZΔsc2+μ2|. Когда выполняется условие ΔZ>Δsc2+μ2 говорят о возникновении топологически нетривиальной фазы, а точка, где ширина зоны равна нулю — точкой топологического фазового перехода. Она разделяет топологически тривиальную и нетривиальную фазы. Когда выполняется условие на существование топологически нетривиальной фазы на обоих краях нанопроволоки возникают майорановские связанные состояния при нуле энергии. На рис. 2 показано как возникает четыре ветви дисперсионных соотношений из уравнения 2 при последовательном включении взаимодействий. Спин-орбитальное взаимодействие вида Шаблон:Math приводит к расщеплению параболического закона дисперсии для нанопроволоки. При добавлении сверхпроводимости добавляется электрон-дырочная симметрия, что удваивает количество дисперсионных кривых и возникает сверхпроводящая щель Δsc в спектре возбуждений. При приложении магнитного поля появляется зеемановское расщепление уровней ΔZ, которое работает против сверхпроводимости и закрывает щель. При равенстве ΔZ=Δsc (химический потенциал μ=0) достигается точка фазового перехода и щель пропадает, но при дальнейшем увеличении магнитного поля щель появляется вновь. Эта щель соответствует состоянию топологической сверхпроводимостиШаблон:Sfn.

Модель Фу — Кейна

В двумерном случае реализация майорановских фермионов оказалась возможна в модели предложенной учёными Лян Фу и Чарльзом Кейном в 2008 годуШаблон:Sfn. Использовав модель топологического изолятора (проводимость в таких материалах существует только на поверхности) с нанесённым на его поверхность тонкого слоя сверхпроводника s-типа, они рассмотрели гамильтониан для волновой функции (в формализме Намбу) Ψ=((ψ,ψ),(ψ,ψ))T, где стрелками обозначены проекции спина, а индекс T отвечает за транспонирование, видаШаблон:Sfn

H=ivτzσμIτz+Δ0I(τxcos(ϕ)+τysin(ϕ)),

где v — скорость электрона на уровне энергии Ферми (фермиевская скорость), I — единичная матрица, σ=(σxy) — двумерный вектор составленный из матриц Паули, действующие на спиновые состояния, τx и τy — матрицы Паули действующие на пары ψ и ψ, смешивая их между собой, μ — химический потенциал, Δ0 — параметр порядка сверхпроводника. Блочная часть гамильтониана H0=ivσμI — это гамильтониан для квазичастиц возникающий на поверхности топологического изолятора. Куперовские пары из сверхпроводника из-за эффекта близости могут находиться на поверхности топологического изолятора, приводя к эффективному гамильтониану взаимодействию аналогичному сверхпроводнику p-типа, где по теории Китаева существуют майорановские фермионы. Отличие состоит в симметрии этого гамильтониана по отношению к обращению времени, что приводит к дополнительному вырождению. Но используя внешнее магнитное поле ориентированное перпендикулярно поверхности сверхпроводника, которое нарушает симметрию по обращению времени, возможно сформировать сверхпроводящие вихри в рассматриваемой системе. Расчёт показывает, что майорановский фермион возникает в ядре вихряШаблон:Sfn.

Примечания

Шаблон:Примечания

Литература

Шаблон:Классификации частиц Шаблон:Добротная статья