Циркуляция векторного поля

Материал из testwiki
Перейти к навигации Перейти к поиску

Циркуля́цией ве́кторного по́ля по данному замкнутому контуру Γ называется криволинейный интеграл второго рода, взятый по Γ. По определению

C=Γ𝐅d𝐥=Γ(Fxdx+Fydy+Fzdz),

где 𝐅={Fx,Fy,Fz} — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Γ, d𝐥={dx,dy,dz} — бесконечно малое приращение радиус-вектора 𝐥 вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру. Приведенное выше определение справедливо для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвольную размерность пространства.

Свойства циркуляции

Свойство аддитивности циркуляции: циркуляция по контуру Γ есть сумма циркуляций по контурам Γ1 и Γ2, то есть C=C1+C2

Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности, то есть

C=iCi.

Циркуляция вектора F по произвольному контуру Г равна потоку вектора rot𝐅 через произвольную поверхность S, ограниченную данным контуром.

Γ𝐅d𝐥=Srot𝐅𝐧dS,

где rot𝐅=[,𝐅]=|𝐞x𝐞y𝐞zxyzFxFyFz| — ротор (вихрь) вектора F.

В случае, если контур плоский, например лежит в плоскости OXY, справедлива теорема Грина

Γ(Fxdx+Fydy)=Γ(FyxFxy)dxdy,

где Γ — плоскость, ограничиваемая контуром Γ (внутренность контура).

Физическая интерпретация

Файл:Циркуляция.jpg
Физическая интерпретация циркуляции: Работа поля по замкнутому контуру

Если F — некоторое силовое поле, тогда циркуляция этого поля по некоторому произвольному контуру Γ есть работа этого поля при перемещении точки вдоль контура Г. Отсюда непосредственно следует критерий потенциальности поля: поле является потенциальным когда циркуляция его по произвольному замкнутому контуру есть нуль. Или же, как следует из формулы Стокса, в любой точке области D ротор этого поля есть нуль.

ΓD:Γ𝐅(𝐫)d𝐥=0𝐫D:rot𝐅(𝐫)=𝟎.

Историческая справка

Термин «циркуляция» был первоначально введен в гидродинамике для расчета движения жидкости по замкнутому каналу. Рассмотрим течение идеальной несжимаемой жидкости. Выберем произвольный контур Γ. Мысленно представим, что мы (мгновенно) заморозили всю жидкость в объеме, за исключением тонкого канала постоянного сечения, включающего в себя контур Γ. Тогда, в зависимости от первоначального характера течения жидкости, она будет либо неподвижной в канале, либо двигаться вдоль контура (циркулировать). В качестве характеристики такого движения берут величину, равную произведению средней скорости движения жидкости по каналу u на длину контура l:

C=ul,

поскольку именно скорость u установится в этом случае в итоге всюду в канале, а величина циркуляции C даст (обобщённый) импульс для жидкости единичной плотности, сопряженный (обобщенной) координате, характеризующей положение жидкости как целого в канале, соответствующей, несколько упрощая, положению одиночной «пылинки» в жидкости, измеренному по линейке, изгибающейся вдоль канала.

Так как при затвердевании стенок канала нормальная к контуру компонента скорости будет погашена (вообразим, что это происходит перед тем, как тангенциальная скорость в канале всюду становится одинаковой вследствие несжимаемости жидкости), жидкость по каналу будет сразу после затвердевания двигаться с тангенциальной составляющей исходной скорости vτ. Тогда циркуляцию можно представить в виде

C=Γvτdl=Γ𝐯d𝐥,

где dl — элемент длины контура.

Позже понятие «циркуляция» было распространено на любые векторные поля, даже такие, в которых «циркулировать» в буквальном смысле нечему.

Литература