Ячейки Бенара

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Механика сплошных сред

Ячейки Бенара в гравитационном поле.

Ячейки Бенара или Рэлея — Бенара — возникновение упорядоченности в виде конвективных ячеек в форме цилиндрических валов или правильных шестигранных структур в слое вязкой жидкости с вертикальным градиентом температуры, то есть равномерно подогреваемой снизу.

Ячейками Бенара можно объяснить происхождение вулканических образований в форме пучка вертикальных колонн — такими являются памятники природы «Девилс-Тауэр» (США) и «Мостовая гигантов» (Северная Ирландия).

Управляющим параметром самоорганизации служит градиент температуры. Вследствие подогрева в первоначально однородном слое жидкости начинается диффузия из-за возникшей неоднородности плотности. При преодолении некоторого критического значения градиента, диффузия не успевает привести к однородному распределению температуры по объёму. Возникают цилиндрические валы, вращающиеся навстречу друг другу (как сцепленные шестерёнки)[1]. При увеличении градиента температуры возникает второй критический переход. Для ускорения диффузии каждый вал распадается на два вала меньшего размера. При дальнейшем увеличении управляющего параметра валы дробятся и в пределе возникает турбулентный хаос, что отчетливо видно на бифуркационной диаграмме или дереве Фейгенбаума.

В тонком слое при подогреве снизу образуются ячейки правильной гексагональной формы, внутри которых жидкость поднимается по центру и опускается по граням ячейки[2]. Такая постановка эксперимента исторически была первой, однако здесь на самом деле наблюдается конвекция Марангони, возникающая за счёт действия сил поверхностного натяжения и зависимости их от температуры жидкости.

Аналитическое решение задачи (задача Рэлея)

Важным в задаче о конвекции в плоском слое является тот факт, что для записи её в приближении Буссинеска возможно получить точное аналитическое решение уравнений гидродинамики. Правда, простое точное решение удаётся найти лишь при абстрактной постановке с двумя свободными недеформируемыми границами слоя (как сверху, так и снизу), более реалистичные варианты таких решений не имеют (но для них хорошо работают приближённые аналитические методы, например метод Галёркина).

Приведём здесь решение задачи[3][4]. Примем, что ось z направлена вверх, перпендикулярно слою, оси x и y параллельны границе. Начало координат удобно выбрать на нижней границе слоя. Исходные уравнения конвекции:

vt+(v)v=1ρ0p+νΔvβTg,

Tt+vT=χΔT,

divv=0.

Безразмерная форма уравнений конвекции для малых возмущений равновесия, в предположении экспоненциального роста возмущений во времени (т. н. «Нормальные» возмущения) — v,θeλt:

λPrv=p+Δv+Raθez,

λθ=Δθ+vez,

divv=0,

где ez — единичный вектор оси z, Pr,Ra — соответственно число Прандтля и число Рэлея, λ — инкремент (скорость роста) возмущений. После обезразмеривания переменная z изменяется от 0 до 1. Т. н. «Нормальные» возмущения являются частными решениями линейной системы дифференциальных уравнений, и поэтому находят широкое применение при исследовании задач в самых различных областях.

Постановка граничных условий производится в предположении, что обе границы недеформируемые, но свободные — при этом отсутствуют касательные напряжения в жидкости. Граничные условия:

vez=0, — недеформируемость границ.

σxz=σyz=0, — отсутствие касательных напряжений. Так как считаем, что работаем с жидкостью, для которой справедливо уравнение Навье — Стокса, то можем явно записать вид тензора вязких напряжений и получить граничные условия для компонент скорости.

σij=η(vixj+vjxi) — закон Навье,

Принимая обозначения для компонент скорости: v={u,v,w}, перепишем граничное условие для касательных напряжений в терминах скорости:

uz=0,

vz=0.

Для возмущений температуры на границе принимается нулевое значение. В итоге, система граничных условий задачи такова:

z=0,1:

w=0;uz=vz=0;θ=0

Теперь, предполагая возмущения нормальными по пространству — v,p,θeλteikr (здесь k — волновой вектор возмущения, параллельный плоскости xy) и заменяя операторы дифференцирования — Δ=2z2k2,={ik;z}, можем переписать систему уравнений конвекции в виде системы ОДУ:

λPrv=p+Δv+Raθez,

λθ=Δθ+w,

divv=0.

Взяв двойной ротор от первого уравнения и спроектировав его на ось z, получим окончательную систему уравнений для возмущений:

λPrΔw=Δ2w+k2Raθ,

λθ=Δθ+w.

Исходя из граничных условий, а также из того, что все производные в системе чётного порядка, удобно представить решение в виде тригонометрических функций:

w=asinnπz,

θ=bsinnπz,

где n — целое число. Решение в виде синусов удовлетворяет сразу всем граничным условиям.

Типичная нейтральная кривая для задачи конвекции в плоском слое

Далее, обозначая D=n2π2+k2, и подставляя предполагаемый вид решения в уравнения, получим линейную однородную алгебраическую систему для a, b. Из её определителя можно выразить зависимость Ra(λ):

Ra(λ)=1Prk2(Dλ2+D2(1+Pr)λ+PrD3)

Полагая здесь λ=0 — граница монотонной устойчивости, невозрастание нормальных возмущений — получим формулу для определения критического числа Рэлея n-ой моды возмущений:

Ra*=(k2+n2π2)3k2.

Наименьшее число Рэлея получится при n=1. Минимум зависимости, как несложно убедиться, приходится на k=π2, а само минимальное число Рэлея равно Ra*=274π4657. В соответствии с критическим волновым числом в слое возникают структуры в виде валов ширины 2 (в безразмерных единицах).

Для задач с другими вариантами границ критическое число Рэлея оказывается выше. К примеру, для слоя с двумя твёрдыми границами оно равно 1708[5], для слоя с твёрдой верхней и свободной нижней границами — 1156, меняются и критические волновые числа. Однако качественно картина конвективных валов не изменяется.

См. также

Примечания

Шаблон:Примечания

Литература

  • L.E.Scriven & C.V.Sternling «Эффекты Марангони»

Ссылки

  1. Ван-Дайк М. Альбом течений жидкости и газа, М.: Мир, 1986 — c. 84, рис. 139—140
  2. Ван-Дайк М. Альбом течений жидкости и газа, М.: Мир, 1986 — c. 85, рис. 140—141
  3. Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. // М.: Наука, 1972 — § 5
  4. Фрик П. Г. Турбулентность: методы и подходы. Курс лекций, ч.1 // Пермь: Пермский гос. техн. ун-т., 1998 — с. 33-37
  5. Гершуни Г. З., Жуховицкий Е. М., там же, § 6