4-тензор

Материал из testwiki
Перейти к навигации Перейти к поиску

4-тензоры, четырёхте́нзоры — класс математических объектов, используемый для описания некоторых физических полей в релятивистской физике, тензор, определённый на четырёхмерном пространстве-времени[1].

  • Замечание: в литературе 4-тензоры часто называются просто тензорами, а размерность и природа векторного пространства (многообразия), на котором они заданы в этом случае оговариваются явно или очевидны из контекста.

В общем случае 4-тензор является объектом с набором индексов:

Ai1i2inj1j2jm,

причём каждый из индексов принимает четыре значения (обычно от нуля до трёх или от одного до четырёх, то есть i1=0,1,2,3,i2=0,1,2,3 итд.

При смене системы отсчёта компоненты этого объекта преобразуются так[2]:

Ai1i2inj1j2jm=βj1k1βj2k2βjmkmαi1l1αi2l2αinlnAl1l2lnk1k2km,

где αijматрица поворота в четырёхмерном пространстве-времени (матрица группы Лоренца), а βij — обратная ей.

Верхние индексы называются контравариантными, а нижние — ковариантными. Суммарное число индексов задаёт ранг тензора. 4-вектор является 4-тензором первого ранга.

Обычно в физике тензоры одинаковой природы с разным числом ковариантных и контравариантных индексов считаются различными представлениями одного и того же объекта. Опускание или поднимание индекса проводится с помощью метрического тензора g^, например для 4-тензора второго ранга

Aij=gjkAki

Алгебра внешнего произведения позволяет также вводить для антисимметричных тензоров родственные им дуальные тензоры.

Преимущества четырёхмерной записи

Уравнения теории относительности, электродинамики, и многих современных фундаментальных теорий, включающих их, особенно удобно записывать, используя 4-векторы и 4-тензоры. Главным преимуществом такой записи есть то, что в этой форме уравнения автоматически лоренц-инвариантны, то есть не изменяются при переходе от одной инерциальной системы координат к другой.

Примеры

4-тензоры в ОТО

4-тензор электромагнитного поля

Шаблон:Основная статья Соответствующий 4-тензор существует также и для описания электромагнитного поля. Это 4-тензор второго ранга. При его использовании основные уравнения для электромагнитного поля: уравнение Максвелла и уравнение движения заряженной частицы в поле имеют особенно простую и элегантную форму.

Определение через 4-потенциал

4-тензор определяется через производные от 4-потенциала[3]:

Fik=AkxiAixk.

Определение через трёхмерные векторы

4-тензор определяется через обычные трёхмерные составные векторов напряжённости следующим образом:

Fik=(0Ex/cEy/cEz/cEx/c0BzByEy/cBz0BxEz/cByBx0)
Fik=(0Ex/cEy/cEz/cEx/c0BzByEy/cBz0BxEz/cByBx0)

Первая форма — это ковариантный тензор, а вторая форма — это контравариантный тензор.

Сила Лоренца

Записанное в 4-векторной форме уравнение движения заряженной частицы в электромагнитном поле приобретает вид

mcduids=qcFikuk,

где uk4-скорость, q — электрический заряд частицы, c — скорость света, m — масса. Правая часть этого уравнения — это сила Лоренца.

См. также

Примечания

Шаблон:Примечания

Внешние ссылки

  1. повороты системы отсчёта в котором включают как обычные повороты в трёхмерном пространстве, так и переходы между системами отсчёта, которые движутся с разными скоростями одна относительно другой (преобразования Лоренца).
  2. Здесь, как принято в теории относительности, знак суммы опускается — повторение индекса внизу и вверху значит суммирование; см. Соглашение Эйнштейна о суммировании.
  3. Формулы на этой странице записаны в системе СГСГ